Cho \(x,y,z>0;x+y+z=3\)
Tìm max : \(P=\sum\dfrac{xy}{\sqrt{z^2+3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz
vì x,y,z>0 nên áp dụng bđt côsi ta có
x+y >= 2\(\sqrt{xy}\)
y+z >= 2\(\sqrt{yz}\)
z+x >= 2\(\sqrt{xz}\)
\(\Rightarrow\)(x+y)(y+z)(z+x) >= 8\(\sqrt{x^2y^2z^2}\)
>= 8xyz
Dấu = xảy ra <=> x=y=z
Ta có:
\(\frac{x}{x+1}=1-\frac{1}{x+1}\)
\(\frac{y}{y+1}=1-\frac{y}{y+1}\)
\(\frac{z}{z+4}=1-\frac{4}{z+4}\)
\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)
\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)
Ta có :\(\frac{x}{4y+z}=\frac{y}{4z+x}=\frac{z}{4x+y}=\frac{x+y+z}{4y+z+4z+x+4x+y}=\frac{x+y+z}{5\left(x+y+z\right)}=\frac{1}{5}\)
=> \(\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{y}{4z+x}=\frac{1}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{4z+x}{y}=5\end{cases}}\)
Khi đó A = 2019 - 1/5 + 5 = 2023,8
\(\frac{x}{4y+z}=\frac{y}{4z+x}=\frac{z}{4x+y}=\frac{x+y+z}{4y+z+4z+x+4x+y}=\frac{x+y+z}{5\left(x+y+z\right)}=\frac{1}{5}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{y}{4z+x}=\frac{1}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{4z+x}{y}=5\end{cases}}}\)
Khi đó \(A=2019-\frac{1}{5}+5=2013,8\)
\(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{3}=3\)
\(\Rightarrow P_{min}=3\) khi \(x=y=z=1\)
\(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
Ta có: \(x^4\ge0;y^4\ge0;z^4\ge0\)
\(x>y\Rightarrow x^4>y^4\)
\(y>z\Rightarrow y-z>0\)
\(x>z\Rightarrow z-x< 0\)
\(\Rightarrow y-z>z-x\)
\(\Rightarrow x^4\left(y-z\right)+y^4\left(z-x\right)>0\)
\(x>y\Rightarrow x-y>0\)
Vậy: \(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)>0\)
\(\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}=\frac{x}{z}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{y}{x}+\frac{z}{x}\ge6\sqrt[6]{\frac{x^2y^2z^2}{x^2y^2z^2}}=6\)
Dấu "=" xảy ra khi \(x=y=z\)
Lời giải:
Theo hệ quả của BĐT AM-GM:
\(x^2+y^2+z^2\geq xy+yz+xz\)
\(\Leftrightarrow (x+y+z)^2\geq 3(xy+yz+xz)\Leftrightarrow xy+yz+xz\leq 3\)
Do đó:
\(P=\sum \frac{xy}{\sqrt{z^2+3}}\leq \sum \frac{xy}{\sqrt{z^2+xy+yz+xz}}\)
\(\Leftrightarrow P\leq \sum \frac{xy}{\sqrt{(z+x)(z+y)}}\) (1)
Áp dụng BĐT AM-GM:
\(\frac{2xy}{\sqrt{(z+x)(z+y)}}\leq \frac{xy}{z+x}+\frac{xy}{z+y}\)
\(\frac{2yz}{\sqrt{(y+x)(x+z)}}\leq \frac{yz}{y+x}+\frac{yz}{x+z}\)
\(\frac{2xz}{\sqrt{(x+y)(y+z)}}\leq \frac{xz}{x+y}+\frac{xz}{z+y}\)
Cộng theo vế:
\(2\sum \frac{xy}{\sqrt{(z+x)(z+y)}}\leq \frac{y(x+z)}{x+z}+\frac{x(y+z)}{y+z}+\frac{z(x+y)}{x+y}\)
\(\Leftrightarrow 2\sum \frac{xy}{\sqrt{(z+y)(z+x)}}\leq x+y+z=3\)
\(\Leftrightarrow \sum \frac{xy}{\sqrt{(z+y)(z+x)}}\leq \frac{3}{2}(2)\)
Từ \((1);(2)\Rightarrow P\leq \frac{3}{2}\Leftrightarrow P_{\max}=\frac{3}{2}\)
Dấu bằng xảy ra khi \(x=y=z=1\)