K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 11 2017

Lời giải:

Theo hệ quả của BĐT AM-GM:

\(x^2+y^2+z^2\geq xy+yz+xz\)

\(\Leftrightarrow (x+y+z)^2\geq 3(xy+yz+xz)\Leftrightarrow xy+yz+xz\leq 3\)

Do đó:

\(P=\sum \frac{xy}{\sqrt{z^2+3}}\leq \sum \frac{xy}{\sqrt{z^2+xy+yz+xz}}\)

\(\Leftrightarrow P\leq \sum \frac{xy}{\sqrt{(z+x)(z+y)}}\) (1)

Áp dụng BĐT AM-GM:

\(\frac{2xy}{\sqrt{(z+x)(z+y)}}\leq \frac{xy}{z+x}+\frac{xy}{z+y}\)

\(\frac{2yz}{\sqrt{(y+x)(x+z)}}\leq \frac{yz}{y+x}+\frac{yz}{x+z}\)

\(\frac{2xz}{\sqrt{(x+y)(y+z)}}\leq \frac{xz}{x+y}+\frac{xz}{z+y}\)

Cộng theo vế:

\(2\sum \frac{xy}{\sqrt{(z+x)(z+y)}}\leq \frac{y(x+z)}{x+z}+\frac{x(y+z)}{y+z}+\frac{z(x+y)}{x+y}\)

\(\Leftrightarrow 2\sum \frac{xy}{\sqrt{(z+y)(z+x)}}\leq x+y+z=3\)

\(\Leftrightarrow \sum \frac{xy}{\sqrt{(z+y)(z+x)}}\leq \frac{3}{2}(2)\)

Từ \((1);(2)\Rightarrow P\leq \frac{3}{2}\Leftrightarrow P_{\max}=\frac{3}{2}\)

Dấu bằng xảy ra khi \(x=y=z=1\)

21 tháng 8 2015

Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz

 

10 tháng 12 2016

vì x,y,z>0 nên áp dụng bđt côsi ta có

x+y >= 2\(\sqrt{xy}\)

y+z >= 2\(\sqrt{yz}\)

z+x >= 2\(\sqrt{xz}\)

\(\Rightarrow\)(x+y)(y+z)(z+x) >= 8\(\sqrt{x^2y^2z^2}\)

                                >= 8xyz

Dấu = xảy ra <=> x=y=z

11 tháng 12 2016

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\)

\(\frac{y}{y+1}=1-\frac{y}{y+1}\)

\(\frac{z}{z+4}=1-\frac{4}{z+4}\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)

\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)

 

 

 

8 tháng 5 2019

Áp dụng bất đẳng thức Cô-si ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}\)

\(=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu = khi x=y=z

21 tháng 8 2020

Ta có :\(\frac{x}{4y+z}=\frac{y}{4z+x}=\frac{z}{4x+y}=\frac{x+y+z}{4y+z+4z+x+4x+y}=\frac{x+y+z}{5\left(x+y+z\right)}=\frac{1}{5}\)

=> \(\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{y}{4z+x}=\frac{1}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{4z+x}{y}=5\end{cases}}\)

Khi đó A = 2019 - 1/5 + 5 = 2023,8

21 tháng 8 2020

\(\frac{x}{4y+z}=\frac{y}{4z+x}=\frac{z}{4x+y}=\frac{x+y+z}{4y+z+4z+x+4x+y}=\frac{x+y+z}{5\left(x+y+z\right)}=\frac{1}{5}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{y}{4z+x}=\frac{1}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{4z+x}{y}=5\end{cases}}}\)

Khi đó \(A=2019-\frac{1}{5}+5=2013,8\)

NV
2 tháng 5 2019

\(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{3}=3\)

\(\Rightarrow P_{min}=3\) khi \(x=y=z=1\)

2 tháng 5 2019

Sao lại lớn hơn hoặc bằng 9 /x+y+z ??

1 tháng 9 2016

\(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

Ta có: \(x^4\ge0;y^4\ge0;z^4\ge0\)

\(x>y\Rightarrow x^4>y^4\)

\(y>z\Rightarrow y-z>0\) 

\(x>z\Rightarrow z-x< 0\) 

\(\Rightarrow y-z>z-x\)

 \(\Rightarrow x^4\left(y-z\right)+y^4\left(z-x\right)>0\)

\(x>y\Rightarrow x-y>0\)

Vậy: \(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)>0\)

NV
23 tháng 7 2020

\(\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}=\frac{x}{z}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{y}{x}+\frac{z}{x}\ge6\sqrt[6]{\frac{x^2y^2z^2}{x^2y^2z^2}}=6\)

Dấu "=" xảy ra khi \(x=y=z\)