K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét △ ABC và  △  BCD:

AB = BC (gt)

∠ B = ∠ C (gt)

BC = CD (gt)

Do đó:  △  ABC =  △  BCD (c.g.c)

⇒ AC = BD (1)

Xét  BCD và  CDE:

BC = CD (gt)

∠ C =  ∠ D (gt)

CD = DE (gt)

Do đó:  △  BCD =  △  CDE (c.g.c) ⇒ BD = CE (2)

Xét  △ CDE và  △  DEA:

CD = DE (gt)

∠ D =  ∠ E (gt)

DE = EA (gt)

Do đó:  △  CDE =  △  DEA (c.g.c) ⇒ CE = DA (3)

Xét  DEA và  EAB:

DE = EA (gt)

∠ E =  ∠ A (gt)

EA = AB (gt)

Do đó:  △  DEA =  △  EAB (c.g.c) ⇒ DA = EB (4)

Từ (1), (2), (3), (4) suy ra: AC = BD = CE = DA = EB

Trong  △  ABC ta có RM là đường trung bình

⇒ RM = 1/2 AC (tính chất đường trung bình của tam giác)

Mặt khác, ta có: Trong Δ BCD ta có MN là đường trung bình

⇒ MN = 1/2 BD (tính chất đường trung bình của tam giác)

Trong  △  CDE ta có NP là đường trung bình

⇒ NP = 1/2 CE (tính chất đường trung bình của tam giác)

Trong  △  DEA ta có PQ là đường trung bình

⇒ PQ = 1/2 DA (tính chất đường trung bình của tam giác)

Trong  △  EAB ta có QR là đường trung bình

⇒ QR = 1/2 EB (tính chất đường trung bình của tam giác)

Suy ra: MN = NP = PQ = QR = RM

Ta có:  ∠ A =  ∠ B =  ∠ C =  ∠ D =  ∠ E = ((5-2 ). 180 0 )/5 =  108 0

△  DPN cân tại D

∠ (DPN) =  ∠ (DNP) = ( 180 0 -  ∠ D )/2 = ( 180 0  -  108 0 )/2 =  36 0

△  CNM cân tại C

⇒  ∠ (CNM) =  ∠ (CMN) = ( 180 0 -  ∠ D )/2 = ( 180 0  -  108 0 )/2 =  36 0

∠ (ADN) +  ∠ (PNM) +  ∠ (CNM) =  180 0

⇒  ∠ (PNM) =  180 0  - ( ∠ (ADN) +  ∠ (CNM) )

            = 180 0  - ( 36 0  –  36 0 ) =  108 0

△  BMR cân tại B

⇒  ∠ (BMR) =  ∠ (BRM) = ( 180 0 -  ∠ B )/2 = ( 180 0  -  108 0 )/2 =  36 0

∠ (CMN) +  ∠ (BRM) +  ∠ (BMR) =  180 0

⇒  ∠ (NMR) =  180 0  - ( ∠ (CMN) +  ∠ (BMR) )

            =  180 0  - ( 36 0  –  36 0 ) =  108 0

△  ARQ cân tại A

⇒  ∠ (ARQ) =  ∠ (AQR) = ( 180 0 -  ∠ A )/2 = ( 180 0  -  108 0 )/2 =  36 0

∠ (BRM) +  ∠ (MRQ) +  ∠ (ARQ) =  180 0

⇒  ∠ (MRQ) =  180 0  - ( ∠ (BRM) +  ∠ (ARQ) )

            = 180 0  - ( 36 0  –  36 0 ) =  108 0

△  QEP cân tại E

⇒  ∠ (EQP) =  ∠ (EPQ) = ( 180 0 -  ∠ E )/2 = ( 180 0  -  108 0 )/2 =  36 0

∠ (AQR) + (RQP) + (EQP) =  180 0

⇒  ∠ (RQP) =  180 0  - ( ∠ (AQR) +  ∠ (EQP) )

            =  180 0  - ( 36 0  –  36 0 ) =  108 0

∠ (EQP) +  ∠ (QPN) +  ∠ (DPN) =  180 0

⇒  ∠ (QPN) =  180 0  - ( ∠ (EPQ) +  ∠ (DPN) )

            =  180 0  - ( 36 0  –  36 0 ) =  108 0

Suy ra :  ∠ (PNM) =  ∠ (NMR) =  ∠ (MRQ) =  ∠ (RQP) =  ∠ (QPN)

Vậy MNPQR là ngũ giác đều.

1 tháng 7 2017

a) và b) Chứng minh nhờ tính chất đường trung bình của tam giác

c) Để chứng minh MNQR là ngũ giác đều ta cần chứng minh hai điều : Hình đó có tất cả các cạnh bằng nhau và có tất cả các góc bằng nhau.

Đa giác. Đa giác đều

30 tháng 12 2019

O I I' M B C D P Q A N E

Goi I la giao diem cua MN va CD 

-> I la trung diem cua BD

Van dung tinh chat duong trung binh doi hai Tg ABD va tg AED

=> PI // NQ 

=> PI = NQ

-> tu giac NIPQ la hinh binh hanh n

-> Mn di qua trung diem Pq

Khi MN//CD

quan sat hinh 

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

a) Vì $FN\parallel AC$ nên áp dụng định lý Talet:

\(\frac{NC}{NB}=\frac{FA}{FB}=\frac{DB}{DC}\)

Nếu $NB=DC$ thì do $MB=MC$ nên $MB-NB=MC-DC$

$\Leftrightarrow MN=MD$ nên $M$ là trung điểm $DN$.

Nếu $NB\neq DC$ thì áp dụng TCDTSBN: $\frac{NC}{NB}=\frac{DB}{DC}=\frac{NC-DB}{NB-DC}=\frac{DC-NB}{NB-DC}=-1< 0$ (vô lý)

Vậy ta có đpcm. 

b) 

Vì $M$ là trung điểm $DN$, $P$ là trung điểm $DF$ nên $MP$ là đtb ứng với cạnh $FN$

$\Rightarrow MP\parallel FN$ và $MP=\frac{1}{2}FN(1)$ 

Mặt khác:

$FN\parallel AC\Rightarrow FN\parallel AE(2)$

$\frac{NC}{NB}=\frac{FA}{FB}=\frac{EC}{EA}$ nên theo Talet đảo thì $EN\parallel AB$ hay $EN\parallel AF(3)$

Từ $(2); (3)$ suy ra $AENF$ là hình bình hành nên $AE=FN(4)$

Từ $(1); (2);(4)$ suy ra $MP\parallel AE$ và $MP=\frac{1}{2}AE$ (đpcm)

c) Gọi $G$ là giao điểm $AM$ và $EP$. Theo định lý Talet:

$\frac{AG}{GM}=\frac{EG}{GP}=\frac{AE}{MP}=2$

$\Rightarrow \frac{AG}{AM}=\frac{EG}{EP}=\frac{2}{3}$

Do đó $G$ chính là trọng tâm của $ABC$ và $DEF$. Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Hình vẽ:

undefined