K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

Ta có: (x+a)(x+b)

\(=x^2+bx+ax+ab\)

\(=x^2+ab+x\left(a+b\right)\)

\(=x^2+ab\)

Bài 2:

Ta có: \(\left(x-m\right)\left(x+n\right)\)

\(=x^2+nx-mx-nm\)

\(=x^2-nm+x\left(n-m\right)\)

\(=x^2-mn\)

8 tháng 8 2021

1. Ta có với \(a+b=0\) thì

\(VP=\left(x+a\right)\left(x+b\right)\) \(=x^2+ax+bx+ab\)\(=x\left(a+b\right)+x^2+ab\)\(=x^2+ab\)

Mặt khác, \(VT=x^2+ab\)

\(\Rightarrow VP=VT\) ( đpcm )

2. Tương tự bài 1

Ta có với \(m-n=0\) thì

\(VP=\left(x-m\right)\left(x+n\right)=x^2-mx+nx-mn=-x\left(m-n\right)+x^2-mn=x^2-mn\)

Mặt khác, \(VT=x^2-mn\)

\(\Rightarrow VP=VT\) ( đpcm )

NV
25 tháng 3 2023

Theo nguyên lý Dirichlet, trong 3 số \(x^2;y^2;z^2\) luôn có ít nhất 2 số cùng phía so với 1

Không mất tính tổng quát, giả sử đó là \(x^2\) và \(y^2\)

\(\Rightarrow\left(x^2-1\right)\left(y^2-1\right)\ge0\)

\(\Leftrightarrow x^2y^2+1\ge x^2+y^2\)

\(\Leftrightarrow x^2y^2+5x^2+5y^2+25\ge6x^2+6y^2+24\)

\(\Leftrightarrow\left(x^2+5\right)\left(y^2+5\right)\ge6\left(x^2+y^2+4\right)\)

\(\Rightarrow\left(x^2+5\right)\left(y^2+5\right)\left(z^2+5\right)\ge6\left(x^2+y^2+4\right)\left(z^2+5\right)\)

\(=6\left(x^2+y^2+1+3\right)\left(1+1+z^2+3\right)\)

\(\ge6\left(x+y+z+3\right)^2\)

Dấu "=" xảy ra khi \(x=y=z=1\)

27 tháng 9 2016

Câu 1 bài 1 là gì vậy mình không hiểungaingung

24 tháng 7 2018

= 0 nhé !

24 tháng 7 2018

mk lấy ví dụ :

cậu có không cái kẹo cậu chia cho 0 bạn vậy bạn còn lại 0 cái 

đó chính là lý do 0 : 0 = 0

28 tháng 6 2021

`(a+b+c)^2=3(ab+bc+ca)`

`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`

`<=>a^2+b^2+c^2=ab+bc+ca`

`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`

`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`

`VT>=0`

Dấu "=" xảy ra khi `a=b=c`

28 tháng 6 2021

`a^3+b^3+c^3=3abc`

`<=>a^3+b^3+c^3-3abc=0`

`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`

`<=>(a+b)^3+c^3-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`

`**a+b+c=0`

`**a^2+b^2+c^2=ab+bc+ca`

`<=>a=b=c`

27 tháng 6 2021

a, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )

\(\Rightarrow a^2+2ab+b^2=\left(a+b\right)^2\ge4ab\)

\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

b, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )

\(\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)

 

ab≤a2+b2/2

a: Ta có: \(a+b+c=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a+b+c=0\)

21 tháng 8 2021

a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)

a: Ta có: a+b+c=0

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow a+b+c=0\)