K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 11 2017

Lời giải:

a)

Ta có \(a(n)=3n^2+6n+13=3(n^2+2n+1)+10\)

\(=3(n+1)^2+10\)

Khi đó:

\(a(i)=3(i+1)^2+10\)

\(a(k)=3(k+1)^2+10\)

Để \(a(i); a(k)\not\vdots 5\Rightarrow (i+1)^2; (k+1)^2\not\vdots 5\)

Mà ta biết rằng một số chính phương khi chia 5 chỉ có thể có dư là 0,1,4, nên nếu \((i+1)^2; (k+1)^2\not\vdots 5\Rightarrow \) nó chia 5 dư 1 hoặc 4

\(a(i); a(k)\) có khác số dư khi chia cho 5 nên \((i+1)^2; (k+1)^2\) cũng khác số dư khi chia cho $5$

Không mất tính tổng quát, giả sử $(i+1)^2$ chia $5$ dư 1; $(k+1)^2$ chia 5 dư 4

\(\Rightarrow (i+1)^2=5m+1; (k+1)^2=5n+4\)

\(\Rightarrow a(i)+a(k)=3(5m+1)+10+3(5n+4)+10\)

\(=15m+15n+35\vdots 5\)

Do đó ta có đpcm.

b)

Đặt \(3n^2+6n+13=t^2(t\in\mathbb{N})\)

\(\Leftrightarrow 3(n+1)^2+10=t^2\)

Vì số chính phương chia cho 5 có thể có dư là 0,1,4 nên ta xét các TH sau:

\((n+1)^2=5k+1\Rightarrow t^2=3(5k+1)+10=5(3k+2)+3\) chia 5 dư 3(vô lý)

\((n+1)^2=5k+4\Rightarrow t^2=3(5k+4)+10=5(3k+4)+2\) chia 5 dư 2 (vô lý)

Do đó \((n+1)^2\vdots 5\Leftrightarrow n+1\vdots 5\). Đặt \(n+1=5k\Rightarrow t^2=75k^2+10\)

\(\Leftrightarrow t^2=5(15k^2+2)\) chia hết cho 5 nhưng không chia hết cho 25 (vô lý)

Do đó pt trên vô nghiệm. Vậy không tồn tại số n thỏa mãn

Khi đó, đặt

17 tháng 12 2017

a)

\(n+3⋮n-1\Leftrightarrow\left(n-1\right)+4⋮n-1\)

\(\Rightarrow4⋮n-1\) (vì n-1 chia hết cho n-1)

\(\Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)

\(n-1=1\Rightarrow n=2\)

\(n-1=2\Rightarrow n=3\)

\(n-1=4\Rightarrow n=5\)

Vậy \(n\in\left\{2;3;5\right\}\)

15 tháng 11 2014

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

15 tháng 11 2014

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.

17 tháng 12 2014

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

10 tháng 6 2015

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5

 

 

25 tháng 2 2022

a) Số bị chia là:3x7+5=26

b) Số bị chia là:5x9+0=45

 

25 tháng 2 2022

bạn ơi cho mình xin đáp án câu c,dhaha

15 tháng 12 2016

Bài 1: a) => tập hợp a = { 108;117 }

b) => tập hợp b = { 90;100;110 }