Với mọi số tự nhiên n đặt a(n)= \(3n^2+6n+13\)
a) c/m a(i), a(k) (i,k là số tự nhiên) không chia hết cho 5 và có số dư khác nhau khi chia cho 5 thì a(i)+a(k) chia hết cho 5.
b) Tìm số tự nhiên n sao cho a là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(n+3⋮n-1\Leftrightarrow\left(n-1\right)+4⋮n-1\)
\(\Rightarrow4⋮n-1\) (vì n-1 chia hết cho n-1)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(n-1=1\Rightarrow n=2\)
\(n-1=2\Rightarrow n=3\)
\(n-1=4\Rightarrow n=5\)
Vậy \(n\in\left\{2;3;5\right\}\)
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
Lời giải:
a)
Ta có \(a(n)=3n^2+6n+13=3(n^2+2n+1)+10\)
\(=3(n+1)^2+10\)
Khi đó:
\(a(i)=3(i+1)^2+10\)
\(a(k)=3(k+1)^2+10\)
Để \(a(i); a(k)\not\vdots 5\Rightarrow (i+1)^2; (k+1)^2\not\vdots 5\)
Mà ta biết rằng một số chính phương khi chia 5 chỉ có thể có dư là 0,1,4, nên nếu \((i+1)^2; (k+1)^2\not\vdots 5\Rightarrow \) nó chia 5 dư 1 hoặc 4
Vì \(a(i); a(k)\) có khác số dư khi chia cho 5 nên \((i+1)^2; (k+1)^2\) cũng khác số dư khi chia cho $5$
Không mất tính tổng quát, giả sử $(i+1)^2$ chia $5$ dư 1; $(k+1)^2$ chia 5 dư 4
\(\Rightarrow (i+1)^2=5m+1; (k+1)^2=5n+4\)
\(\Rightarrow a(i)+a(k)=3(5m+1)+10+3(5n+4)+10\)
\(=15m+15n+35\vdots 5\)
Do đó ta có đpcm.
b)
Đặt \(3n^2+6n+13=t^2(t\in\mathbb{N})\)
\(\Leftrightarrow 3(n+1)^2+10=t^2\)
Vì số chính phương chia cho 5 có thể có dư là 0,1,4 nên ta xét các TH sau:
\((n+1)^2=5k+1\Rightarrow t^2=3(5k+1)+10=5(3k+2)+3\) chia 5 dư 3(vô lý)
\((n+1)^2=5k+4\Rightarrow t^2=3(5k+4)+10=5(3k+4)+2\) chia 5 dư 2 (vô lý)
Do đó \((n+1)^2\vdots 5\Leftrightarrow n+1\vdots 5\). Đặt \(n+1=5k\Rightarrow t^2=75k^2+10\)
\(\Leftrightarrow t^2=5(15k^2+2)\) chia hết cho 5 nhưng không chia hết cho 25 (vô lý)
Do đó pt trên vô nghiệm. Vậy không tồn tại số n thỏa mãn
Khi đó, đặt