Chứng minh rằng: (n+10).(n+15)chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ta có : (n+15) -(n+10) =5 do đó n+15 và n+10 không cùng tính chẵn lẻ
do đó 1 trong hai số chia hết cho 2
nên tích hai số đó chia hết cho 2.
b, do n ,n+1, n+2 là 3 số tự nhiên liên tiếp nên tồn tại 1 trong 3 số chia hết cho 3
nên tích ba số đã cho chia hết cho 3
Dễ quá, cấm copy:
Xét hai trường hợp:
+ n là số chẵn thì n+10 là số chẵn -> n+10 chia hết cho 2
Vậy trong trường hợp này tích trên luôn chia hết cho 2
+ n là số lẻ thì n+15 là số chẵn -> n+15 chia hết cho 2
Vậy trong trường hợp này tích trên luôn chia hết cho 2
có hay ko : (x+9) .(x-y) =1002
cho mình hỏi các bạn bài này làm như thế nào nhé !!
1,
Vì n là số tự nhiên nên n có dạng 2k hoặc 2k+1(k là số tự nhiên)
TH1:n=2k=>n+10 chia hết cho 2 (1)
TH1:n=2k+1=>n+15 chia hết cho 2 (2)
Từ (1),(2)=>(n+10)(n+15) chia hết cho 2
2,
Vì n là số tự nhiên nên n,n+1,n+2 là 3 số tự nhiên liên tiếp
=>n(n+1)(n+2) chứa ít nhất 1 bội của 2 và chứa 1 bội của 3
=>đccm
Mấy bài trước mk lm mà bn đâu có **** cho mk bây giờ mk sẽ ko lm cho bn
Nếu a là lẻ thì a+15 là chẵn nên
(a.10)+(a.15)là chẵn=>chia hết cho 2.
Nếu a là chẵn thì a+10 là chẵn nên
(a.10)+(a.15)là chẵn=>chia hết cho 2
LI KE NHA