cho tong A=1+2+\(2^2\)+\(2^3\)+......+\(2^{11}\)không tính tổng chứng tỏ Achia hêt cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1+2+...+2^{11}\)
\(=\left(1+2\right)+...+\left(2^{10}+2^{11}\right)\)
\(=1\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(=1\cdot3+...+2^{10}\cdot3\)
\(=3\cdot\left(1+...+2^{10}\right)⋮3\)
A = 1 + 2 + 22 + ... + 211
= (1+2) + (22+23) + ... + (210+211)
= 3.22(1+2) + ... + 210(1+2)
= 3(22+...+210) \(⋮\)3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1+2+2^2+2^3+............+2^{11}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{10}+2^{11}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(=\left(1+2\right)\left(1+2^2+...+2^{10}\right)\)
\(=3\cdot\left(1+2^2+...+2^{10}\right)⋮3\)
=>đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
A=(1+2)+(22+23)+...+(210+211)
A=3+22.(1+2)+...+210.(1+2)
A=3+22.3+...+210.3
A=3+(22+...+210)
=>A:cho 3
tick mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = 1 + 2 + 22 + ... + 211
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{10}+2^{11}\right).\)
\(=3+2^2\left(1+2\right)+2^4\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(=3\left(1+2^2+2^4+...+2^{10}\right)⋮3\)
A=(1+2)+(2^2+2^3)+...+(2^10+2^11)
= 3+2^2(1+2)+...+2^10(1+2)
=3+2^2.3+...+2^10.3
= 3(1+2^2+...+2^10) chia hết cho 3
=> tổng A chia hết cho 3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1+2+2^2+2^3+...+2^{11}\)
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{10}+2^{11}\right)\)
\(A=3+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(A=3+2^2.3+...+2^{10}.3\)
\(A=3\left(1+2^2+...+2^{10}\right)\)
\(\Rightarrow A⋮3\)
Vậy \(A⋮3\)
!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
A= ( 2+2^20) + (2^3 +2^4) + ( 2^5 + 2^6) + ... + ( 2^99 + 2^100)
A= 2 ( 1+2 ) + 2^3 ( 1+2 ) + 2^5 ( 1+2 ) + ....+2^99 ( 1+2)
A= 3 ( 2+2^2+2^5+...+2^99) chia hết cho 3
vậy A chia hết cho 3 T I C K MIK NHA
TL
A = 2 + 2 2 + 2 3 + . . . + 2 50
= ( 2 + 2 2 + 2 3 ) + . . . + ( 2 46 + 2 47 + 2 48 ) + 2 49 + 2 50
= 30 + . . . + 30. ( 2 45 + 2 46 + 2 47 ) + ( . . .2 ) + ( . . .4 )
= 30 ( 1 + . . . + 2 45 + 2 46 + 2 47 ) + ( . . .6 ) = ( . . .0 ) + ( . . .6 )
= ( . . .6 ) A=2+22+23+...+250
=(2+22+23)+...+(246+247+248)+249+250
=30+...+30.(245+246+247)+(...2)+(...4)
=30(1+...+245+246+247)+(...6)=(...0)+(...6)=(...6)
Vậy chữ số tận cùng của A là 6
HT