Tìm ba số x, y, z biết:
15x = 10y = 6z và z.y.z = 240
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
15x = -10y
=> 3.x = -2.y => x/-2 = y/3 [1]
-10y = 6.z
=> -5.y = 3.z => y/3 = z/-5 [2]
Từ [1] và [2] => x/-2 = y/3 = z/-5
Đặt x/-2= y/3 = z/-5 = k
=> x= -2k ; y= 3k ; z= -5k
=> xyz = 30. k^3 = 30000 => k^3 = 1000 => k = 10
=> x= -20 ; y = 30 ; z= -50
Vậy x= -20 ; y= 30 ; z= -50
15x = -10y = 6z
<=> \(\frac{15x}{30}=\frac{-10y}{30}=\frac{6z}{30}\)
<=> \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=-3k\\z=5k\end{cases}}\)
Ta có: xyz = -30000
=> 2k.(-3k).5k = -30000
=> -30k3 = -30000
=> k3 = 1000
=> k = 10
=> x = 20, y = -30, z = 50
Vì 15x = -10y = 6z => \(\frac{15x}{30}=\frac{-10y}{30}=\frac{6z}{30}\) => \(\frac{x}{2}=\frac{-y}{3}=\frac{z}{5}\)
Đặt : \(\frac{x}{2}=\frac{-y}{3}=\frac{z}{5}=k\), ta có : x = 2k ; y = (-3).k ; x = 5k
=> x.y.z = 2 .k. ( -3 ). k.5.k = -30.k3 = -30000
=> k3 = 1000 => k = 10 => x = 10. 2 = 20
=> y = 10. ( - 3 ) = -30
=> z = 10.5 = 50
Ta có : 15x = 6z
=> x = 6/15z
-10y = 6z
=> y= -3/5z
=> xyz = -30000
<=> (6/15z) . (-3/5z) . z = -30000
<=> z^3 .( -6/25) = -30000
<=> z^3 = 125000
<=> z = 50
=> y = -30
=> x = 20
\(15x=10y=6z\)
\(\Leftrightarrow\)\(\frac{15x}{30}=\frac{10y}{30}=\frac{6z}{30}\)
\(\Leftrightarrow\)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)\(\Rightarrow\)\(\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Suy ra \(xyz=-1920\)\(\Leftrightarrow\)\(2k.3k.5k=-1920\)
\(\Leftrightarrow\)\(30k=-1920\)
\(\Leftrightarrow\)\(k=\frac{-1920}{30}\)
\(\Leftrightarrow\)\(k=-64\)
Do đó :
\(x=2k=2.\left(-64\right)=-128\)
\(y=3k=3.\left(-64\right)=-192\)
\(z=5k=5.\left(-64\right)=-320\)
Vậy \(x=-128\)\(;\)\(y=-192\) và \(z=-320\)
Chúc bạn học tốt ~
Cảm ơn bạn nhiều nha !
Chúc bạn học tốt !
Bạn kết bạn với mình nhé !
\(15x=-10y\) => \(\frac{x}{-10}=\frac{y}{15}\) => \(\frac{x}{-2}=\frac{y}{3}\)
\(-10y=6z\) => \(\frac{y}{6}=\frac{z}{-10}\) => \(\frac{y}{3}=\frac{z}{-5}\)
=> \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}\)
=> \(\left(\frac{x}{2}\right)^3=\left(\frac{y}{-3}\right)^3=\left(\frac{z}{5}\right)^3=\frac{xyz}{2.-3.5}=\frac{-30000}{-30}=1000\)
=> x = 20
y = -30
z = 50
Chúc bạn làm bài tốt
\(15x=-10y=6z\Rightarrow\frac{15x}{30}=\frac{-10y}{30}=\frac{6z}{30}\)
\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=n\)
\(\Rightarrow x=2n,y=-3n,z=5n\)
\(\Rightarrow xyz=2n.-3n.5n\)
\(=-30n^3=-30000\Rightarrow n^3=-1000=-10^3\)
\(\Rightarrow n=-10\)
\(15x=10y=6z\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{20}{10}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.2=4\\y=2.3=6\\z=2.5=10\end{matrix}\right.\)
\(15x=-10y=6z\Leftrightarrow\frac{15x}{30}=\frac{-10y}{30}=\frac{6z}{30}\)
\(\Leftrightarrow\frac{x}{2}=\frac{-y}{3}=\frac{1}{5}\)
Đặt \(\frac{x}{2}=\frac{-y}{3}=\frac{1}{5}=k\)
\(\Rightarrow x=2k;y=-3k;z=5k\)
\(\Rightarrow xyz=-30000\Leftrightarrow2k\cdot\left(-3\right)k\cdot5k=-30000\)
\(\Leftrightarrow-30k^3=-30000\)
\(\Leftrightarrow k^3=1000\)\(\Leftrightarrow k=10\)
\(\Rightarrow\begin{cases}x=2k=2\cdot10=20\\y=\left(-3\right)k=-3\cdot10=-30\\z=5k=5\cdot10=50\end{cases}\)
Ta có: 15x = -10y = 6z
\(=\frac{x}{\frac{1}{15}}=\frac{y}{\frac{-1}{10}}=\frac{z}{\frac{1}{6}}\)
\(\Rightarrow\left(\frac{x}{\frac{1}{15}}\right)^3=\left(\frac{y}{\frac{-1}{10}}\right)^3=\left(\frac{z}{\frac{1}{6}}\right)^3=\frac{x}{\frac{1}{15}}.\frac{y}{\frac{-1}{10}}.\frac{z}{\frac{1}{6}}\)
\(=\frac{x^3}{\frac{1}{15^3}}=\frac{y^3}{\frac{-1}{10^3}}=\frac{z^3}{\frac{1}{6^3}}=\frac{-30000}{\frac{-1}{900}}=300\)
\(\Rightarrow\begin{cases}x^3=300^3.\frac{1}{15^3}=20^3\\y^3=300^3.\frac{-1}{10^3}=-30^3\\z^3=300^3.\frac{1}{6^3}=50^3\end{cases}\)\(\Rightarrow\begin{cases}x=20\\y=-30\\z=50\end{cases}\)
Vậy x = 20; y = -30; z = 50
Ta có: \(15x=10y=6z\Leftrightarrow\dfrac{x}{\dfrac{1}{15}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{6}}\)
Đặt \(\dfrac{x}{\dfrac{1}{15}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{6}}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{15}k\\y=\dfrac{1}{10}k\\z=\dfrac{1}{6}k\end{matrix}\right.\)
Mà \(xyz=240\)
\(\Rightarrow\dfrac{1}{15}k.\dfrac{1}{10}k.\dfrac{1}{6}k=240\)
\(\Rightarrow\dfrac{1}{900}k^3=240\)
\(\Rightarrow k^3=\dfrac{240}{\dfrac{1}{900}}=216000\)
\(\Rightarrow k=\sqrt[3]{216000}=60\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{15}.60=4\\y=\dfrac{1}{10}.60=6\\z=\dfrac{1}{6}.60=10\end{matrix}\right.\)
Vậy \(x=4\\ y=6\\ z=10\)
Từ 15x = 10y = 6z ⇒ \(\dfrac{15x}{30}=\dfrac{10y}{30}=\dfrac{6z}{30}\)
⇒ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\Rightarrow2k.3k.5k=240\)
Từ 2k.3k.5k ta có:
2k.3k.5k=240
(2.3.5) . \(k^3\)=240
\(k^3\)=240:30
\(k^3\) =8
k=2
⇒x=2.2=4
⇒y=3.2=6
⇒z=5.2=10