Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left[\begin{array}{nghiempt}x-9=15k\\y-12=20k\\z-24=40k\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x=15k+9\\y=20k+12\\z=40k+24\end{array}\right.}\)
ta có:
x.y=1200\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\Rightarrow\frac{x-9}{15}=\frac{y-12}{20}=\frac{z-24}{40}=k\)
=> (15k+9)(20k+12)=1200
=> 3.4(5k+3)(5k+3)=1200
=> (5k+3)2=100
=> 5k+3=\(\pm\)10
=> \(\left[\begin{array}{nghiempt}5k+3=10\\5k+3=-10\end{cases}\Rightarrow\left[\begin{array}{nghiempt}5k=7\\5k=-13\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}k=\frac{7}{5}\\k=-\frac{13}{5}\end{array}\right.}\)
* với k=7/5
x=7/5x15+9=30
y=7/5x20+12=40
z=7/5x40+24=80
* với k=-13/5
x=-13/5x15+9=-30
y=-13/5x20+12=-40
z=-13/5x40+24=-80
b)
\(\frac{40}{x-30}=\frac{20}{y-50}=\frac{28}{z-21}\Rightarrow\frac{x-30}{40}=\frac{y-50}{20}=\frac{z-21}{28}k=\)
=>\(\left[\begin{array}{nghiempt}x-30=40k\\y-50=20k\\z-21=28k\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x=40k+30\\y=20k+50\\z=28k+21\end{array}\right.}\)
ta có:
x.y.z=22400
=> (40k+30)(20k+50)(28k+21)=22400
c) 15x=-10y=6z
\(\Rightarrow\frac{15x}{30}=\frac{-10y}{30}=\frac{6z}{30}\Rightarrow\frac{x}{2}=-\frac{y}{3}=\frac{z}{5}=k\)
=> \(\left[\begin{array}{nghiempt}x=2k\\y=-3k\\z=5k\end{array}\right.\)
ta có:
x.y.z=30000
=> 2k.(-3k).5k=30000
=> k3=1000
=> k=10
ta có: x=10x2=20
y=10.(-3)=-30
z=10.5=50
40/x-30=20/y-15=28/z-21 => 40/x-40/30=20/y-20/15=28/z-28/21 => 40/x-4/3=20/y-4/3=28/z-4/3
<=> 40/x=20/y=28/z=K => x=40.K; y=20.K; z=28.K
<=> xyz=40.20.28.K3 => xyz=22400.K3
<=>K3=1 => K=+-1
<=> x=40.K = 40.1=40 (1)
=40.(-1)=-40
TH(1): x=40 => y=20; z =28
TH(2); x=-40 => y=-20; z=-28
vậy x=40; y=20; z =28
hoặc x=-40; y=-20; z=-28
câu b làm y vậy đó bạn đổi 15x=-10y=6z=>x/1/15=y/-1/10=z/1/6
\(a.\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\&xy=1200\)
\(\Leftrightarrow\dfrac{15}{20}=\dfrac{x-9}{y-12}\Leftrightarrow\dfrac{3}{4}=\dfrac{x-9}{y-12}\)
\(\Rightarrow\dfrac{9}{12}=\dfrac{x-9}{y-12}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{9}{12}=\dfrac{x-9}{y-12}=\dfrac{x-9+9}{y-12+12}=\dfrac{x}{y}\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{xy}{y^2}=\dfrac{x^2}{xy}\)
Từ \(\dfrac{3}{4}=\dfrac{xy}{y^{^2}}\Rightarrow\dfrac{3}{4}=\dfrac{1200}{y^2}\Rightarrow y^2=1200.\dfrac{4}{3}=1600\)
\(\Rightarrow y=\sqrt{1600}=\pm40\)
+ TH1: \(y=40\Rightarrow x=30\)
\(\dfrac{15}{x-9}=\dfrac{40}{z-24}\Rightarrow z=80\) (tự giải pt)
+ TH2: \(y=-40\Rightarrow x=-30\)
\(\dfrac{15}{x-9}=\dfrac{40}{z-4}\Rightarrow z=-80\) (tự giải pt)
Vậy, các cặp \(\left(x;y;z\right)\) thỏa mãn là \(\left(30;40;80\right)\&\left(-30;-40;-80\right)\)
\(b.15x=-10y=6z\&xyz=30000\)
\(\Rightarrow\left\{{}\begin{matrix}15x=-10y\\-10y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-10}=\dfrac{y}{15}\\\dfrac{y}{6}=\dfrac{z}{-10}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-20}=\dfrac{y}{30}\\\dfrac{y}{30}=\dfrac{z}{-50}\end{matrix}\right.\Rightarrow\dfrac{x}{-20}=\dfrac{y}{30}=\dfrac{z}{-50}\)
Đặt \(\dfrac{x}{-20}=\dfrac{y}{30}=\dfrac{z}{-50}=k\Rightarrow x=-20k;y=30k;z=-50k\)
\(\Rightarrow xyz=30000\Rightarrow-20k.30k.\left(-50k\right)=30000\Rightarrow30000k^3=30000\)
\(\Rightarrow k^3=1\Rightarrow k=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=-20\\y=30\\z=-50\end{matrix}\right.\)
\(15x=-10y=6z\Leftrightarrow\frac{15x}{30}=\frac{-10y}{30}=\frac{6z}{30}\)
\(\Leftrightarrow\frac{x}{2}=\frac{-y}{3}=\frac{1}{5}\)
Đặt \(\frac{x}{2}=\frac{-y}{3}=\frac{1}{5}=k\)
\(\Rightarrow x=2k;y=-3k;z=5k\)
\(\Rightarrow xyz=-30000\Leftrightarrow2k\cdot\left(-3\right)k\cdot5k=-30000\)
\(\Leftrightarrow-30k^3=-30000\)
\(\Leftrightarrow k^3=1000\)\(\Leftrightarrow k=10\)
\(\Rightarrow\begin{cases}x=2k=2\cdot10=20\\y=\left(-3\right)k=-3\cdot10=-30\\z=5k=5\cdot10=50\end{cases}\)
Ta có: 15x = -10y = 6z
\(=\frac{x}{\frac{1}{15}}=\frac{y}{\frac{-1}{10}}=\frac{z}{\frac{1}{6}}\)
\(\Rightarrow\left(\frac{x}{\frac{1}{15}}\right)^3=\left(\frac{y}{\frac{-1}{10}}\right)^3=\left(\frac{z}{\frac{1}{6}}\right)^3=\frac{x}{\frac{1}{15}}.\frac{y}{\frac{-1}{10}}.\frac{z}{\frac{1}{6}}\)
\(=\frac{x^3}{\frac{1}{15^3}}=\frac{y^3}{\frac{-1}{10^3}}=\frac{z^3}{\frac{1}{6^3}}=\frac{-30000}{\frac{-1}{900}}=300\)
\(\Rightarrow\begin{cases}x^3=300^3.\frac{1}{15^3}=20^3\\y^3=300^3.\frac{-1}{10^3}=-30^3\\z^3=300^3.\frac{1}{6^3}=50^3\end{cases}\)\(\Rightarrow\begin{cases}x=20\\y=-30\\z=50\end{cases}\)
Vậy x = 20; y = -30; z = 50
15x = -10y = 6z
<=> \(\frac{15x}{30}=\frac{-10y}{30}=\frac{6z}{30}\)
<=> \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=-3k\\z=5k\end{cases}}\)
Ta có: xyz = -30000
=> 2k.(-3k).5k = -30000
=> -30k3 = -30000
=> k3 = 1000
=> k = 10
=> x = 20, y = -30, z = 50
Vì 15x = -10y = 6z => \(\frac{15x}{30}=\frac{-10y}{30}=\frac{6z}{30}\) => \(\frac{x}{2}=\frac{-y}{3}=\frac{z}{5}\)
Đặt : \(\frac{x}{2}=\frac{-y}{3}=\frac{z}{5}=k\), ta có : x = 2k ; y = (-3).k ; x = 5k
=> x.y.z = 2 .k. ( -3 ). k.5.k = -30.k3 = -30000
=> k3 = 1000 => k = 10 => x = 10. 2 = 20
=> y = 10. ( - 3 ) = -30
=> z = 10.5 = 50
\(15x=-10y=6z\) => \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=k\)
=> \(x=2k;\) \(y=-3k;\)\(z=5k\)
Ta có: \(x.y.z=-30000\)
<=> \(2k.\left(-3k\right).5k=-30000\)
<=> \(-30k^3=30000\)
<=> \(k^3=1000\)
<=> \(k=10\)
suy ra: \(x=20;\)\(y=-30\)\(z=50\)