1. Có 3 hộp đựng bi. Hộp một có 3 viên bi đỏ, hộp hai có 2 viên bi đỏ và 3 viên bi xanh, hộp ba có 4 viên bi đỏ và 1 viên bi xanh. Lấy ngẫu nhiên từ hộp một và hộp hai ra mỗi hộp 1 viên bi rồi bỏ vào hộp ba, sau đó từ hộp ba lấy ngẫu nhiên ra 1 viên bi thì được bi đỏ. Tính xác suất để viên bi lấy được là của hộp ba.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có một hộp viên bi xanh 1 viên bi đỏ 1 viên bi vàng và 1 viên bi có kích thước và khối lượng như nhau mỗi lần An lấy một viên bi ra và ghi lại một 1 viên bi sau đó lại bỏ bi vào hộp sau 30 lần liên tiếp lấy bi có 9 lần xuất hiện bi màu đỏ , 10 lần xuất hiện bi màu vàng Tính xác suất trực nghiệm xuất hiện bi màu xanh
Chọn A
Lời giải
Không gian mẫu là số sách chọn ngẫu nhiên mỗi hộp 1 viên bi
Số phần tử của không gian mẫu là Ω = C 15 1 . C 18 1
Gọi X là biến cố "2 viên bi lấy ra từ mỗi hộp có cùng màu"
Ta có các kết quả thuận lợi cho biến cố X như sau
● Hộp A lấy ra 1 bi trắng và hộp B lấy ra 1 bi trắng, có C 4 1 . C 7 1 cách
● Hộp A lấy ra 1 bi đỏ và hộp B lấy ra 1 bi đỏ, có C 5 1 . C 6 1 cách
● Hộp A lấy ra 1 bi xanh và hộp B lấy ra 1 bi xanh, có C 6 1 . C 5 1 cách
Suy ra số phần tử của biến cố
Vậy xác suất cần tính
P ( X ) = Ω x Ω = 44 135
Đáp án C
Để xác định biến cố, ta xét các trường hợp sau:
+) 2 bi xanh và 1 bi đỏ, suy ra có C 5 2 . C 4 1 = 40 cách.
+) 3 bi xanh và 0 bi đỏ, suy ra có C 5 3 = 10 cách.
Suy ra xác suất cần tính là P = 40 + 10 C 9 3 = 25 42
Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega \right) = C_7^2.C_7^2 = 441\)
a) Biến cố “Bốn viên bi lấy ra có cùng màu” xảy ra khi mỗi lần lấy từ 2 hộp đều là hai viên bi xạnh hoặc hai viên bi đỏ. Số kết quả thuận lợi cho biến cố là \(C_4^2.C_5^2 + C_3^2.C_2^2 = 63\)
Vậy xác suất của biến cố “Bốn viên bi lấy ra có cùng màu” là \(P = \frac{{63}}{{441}} = \frac{1}{7}\)
b) Số kết quả thuận lợi cho biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là \(C_4^1.C_3^1.C_2^2 + C_3^2.C_5^1.C_2^1 = 42\)
Vậy xác suất của biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là: \(P = \frac{{42}}{{441}} = \frac{2}{{21}}\)
c) Gọi A là biến cố “Trong 4 viên bi lấy ra có đủ cả bi xanh và bi đỏ”, ta có biến cố đối là \(\overline A \): “4 viên bi lấy ra chỉ có một màu”
\(\overline A \) xảy ra khi 2 lần lấy ra đều được các viên bi cùng màu xanh hoặc cùng màu đỏ
Từ câu a) ta có xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{1}{7}\)
Suy ra, xác suất của biến cố A là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{7} = \frac{6}{7}\)
Không gian mẫu là chọn ngẫu nhiên mỗi hộp 2 viên bi.
Suy ra số phần tử của không gian mẫu là .
Gọi A là biến cố 4 viên bi được chọn luôn có bi đỏ nhưng không có bi xanh . Ta liệt kê các trường hợp thuận lợi của không gian biến cố A như sau:
● Trường hợp 1. Chọn hộp thứ nhất 2 viên bi đỏ, có cách.
Chọn hộp thứ hai 2 viên bi từ 8 viên bi (2 đỏ và 6 vàng), có cách.
Do đó trường hợp này có cách.
● Trường hợp 2. Chọn hộp thứ nhất 1 viên bi đỏ và 1 viên bi vàng, có cách.
Chọn hộp thứ hai 2 viên bi từ 8 viên bi (2 đỏ và 6 vàng), có cách.
Do đó trường hợp này có cách.
● Trường hợp 3. Chọn hộp thứ nhất 2 viên bi vàng, có cách.
Chọn hộp thứ hai 2 viên bi đỏ hoặc 1 viên bi đỏ và 1 viên bi vàng, có cách.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố A là
Vậy xác suất cần tính
Chọn B.