1.Tìm txđ D của hàm số\(\frac{2x-1}{\sqrt{x-\left|x-4\right|}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x\(\in\)R\{3}
b: ĐKXĐ: \(\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)
a: ĐKXĐ: 2*sin x+1<>0
=>sin x<>-1/2
=>x<>-pi/6+k2pi và x<>7/6pi+k2pi
b: ĐKXĐ: \(\dfrac{1+cosx}{2-cosx}>=0\)
mà 1+cosx>=0
nên 2-cosx>=0
=>cosx<=2(luôn đúng)
c ĐKXĐ: tan x>0
=>kpi<x<pi/2+kpi
d: ĐKXĐ: \(2\cdot cos\left(x-\dfrac{pi}{4}\right)-1< >0\)
=>cos(x-pi/4)<>1/2
=>x-pi/4<>pi/3+k2pi và x-pi/4<>-pi/3+k2pi
=>x<>7/12pi+k2pi và x<>-pi/12+k2pi
e: ĐKXĐ: x-pi/3<>pi/2+kpi và x+pi/4<>kpi
=>x<>5/6pi+kpi và x<>kpi-pi/4
f: ĐKXĐ: cos^2x-sin^2x<>0
=>cos2x<>0
=>2x<>pi/2+kpi
=>x<>pi/4+kpi/2
1. Hàm số xác định `<=> 1-cosx \ne 0<=>cosx \ne 1<=>x \ne k2π`
Vì: `1+cosx >=0 forallx ; 1-cosx >=0 forall x`
2. Hàm số xác định `<=> sin^2x \ne cos^2x <=> (1-cos2x)/2 \ne (1+cos2x)/2`
`<=>cos2x \ne 0<=> 2x \ne π/2+kπ <=> x \ne π/4+kπ/2`
3. Hàm số xác định `<=> cos2x \ne 0<=> x \ne π/4+kπ/2 (k \in ZZ)`.
Bạn cho mình hỏi tại sao x khác k2\(\pi\) là lý thuyết ở đoạn nào thế ạ?
a, y xác định `<=> 3cos(2x+3) \ne 0`
`<=>cos(2x+3) \ne 0`
`<=>2x+3 \ne π/2+kπ`
`<=>x \ne π/4 -3/2 +k π/2 (k \in ZZ)`
b, y xác định `<=> sin(x/3+π/4) \ne0`
`<=> x/3+π/4 \ne kπ`
`<=> x \ne (-3π)/4+ k3π`
ĐKXĐ:
a.
\(cos\left(2x+3\right)\ne0\)
\(\Leftrightarrow2x+3\ne\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=-\dfrac{3}{2}+\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
b.
\(sin\left(\dfrac{x}{3}+\dfrac{\pi}{4}\right)\ne0\)
\(\Leftrightarrow\dfrac{x}{3}+\dfrac{\pi}{4}\ne k\pi\)
\(\Leftrightarrow x\ne-\dfrac{3\pi}{4}+k3\pi\)
\(y\) có TXĐ là \(\mathbb{R}\) \(\Leftrightarrow (mx+3)(x-2) ≥0\)
TH1: \(\left[ \begin{array}{l}mx+3\\x-2=0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x=\dfrac{-3}{m} (m\ne0)\\x=2\end{array} \right.\)
TH2: \(\begin{cases}mx+3>0\\x-2>0\\\end{cases} \Leftrightarrow \begin{cases}x > \dfrac{-3}{m} \\x>2\\\end{cases} \)
TH3: \(\begin{cases}mx+3<0\\x-2<0\\\end{cases} \Leftrightarrow \begin{cases}x < \dfrac{-3}{m}\\x<2\\\end{cases} \)
Vậy...
d.
ĐKXĐ: \(x\left|x\right|-4>0\)
\(\Leftrightarrow x\left|x\right|>4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x^2>4\end{matrix}\right.\) \(\Leftrightarrow x>2\)
e.
ĐKXĐ: \(\left|x^2-2x\right|+\left|x-1\right|\ne0\)
Ta có:
\(\left|x^2-2x\right|+\left|x-1\right|=0\Leftrightarrow\left\{{}\begin{matrix}x^2-2x=0\\x-1=0\end{matrix}\right.\) (ko tồn tại x thỏa mãn)
\(\Rightarrow\) Hàm xác định với mọi x hay \(D=R\)
f.
ĐKXĐ: \(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\left|x\right|+4\ne0\end{matrix}\right.\)
Xét \(x\left|x\right|+4=0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x^2+4=0\left(vn\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-x^2+4=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=-2\)
Hay \(x\left|x\right|+4\ne0\Leftrightarrow x\ne-2\)
Kết hợp với \(x\ge-2\Rightarrow x>-2\)
ĐKXĐ: \(\dfrac{\left|x-1\right|}{x+2}-1\ge0\Leftrightarrow\dfrac{\left|x-1\right|}{x+2}>1\)
Với \(x< -2\) ko thỏa mãn
Với \(x>-2\Rightarrow x+2>0\)
BPT tương đương: \(\left|x-1\right|>x+2\Rightarrow\left(x-1\right)^2>\left(x+2\right)^2\)
\(\Leftrightarrow6x< -3\Rightarrow x< -\dfrac{1}{2}\Rightarrow-2< x< -\dfrac{1}{2}\)
\(\Rightarrow x=-1\) là số nguyên duy nhất trong TXĐ của hàm số
Ta có \(-x^2+3x\) xác định với mọi \(x>0\)
\(x-1\ne0;\forall x\le0\Rightarrow\dfrac{2x-3}{x-1}\) xác định với mọi \(x\le0\)
\(\Rightarrow\) Hàm xác định với mọi x thuộc R hay \(D=R\)
x - |x - 4| >= 0
mà x - |x - 4| ở mẫu
=> x - |x - 4| >0
vì |x - 4| luôn dương ( >0)
=> x > 0
Vậy TXD D = ( 0; \(+\bowtie\))