Cho ΔABC cân tại A. Lấy điểm D trên cạnh AB,điểm E trên cạnh AC sao cho BD=CE
Chứng minh:
a) DE // BC
b) Δ ABE = Δ ACD
c) Gọi O là giao điểm của BE và CD. Chứng tỏ rằng AO đi qua trung điểm của BC
d) Trên nửa mặt phẳng là bờ BC không chứa điểm A , ke Bx ⊥ AB tại B , Cy ⊥ AC tại C .
Tia Bx và Cy cắt nhau tại I .CMR A,O,I thẳng hàng
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
b: Xét ΔABE và ΔACD có
AB=AC
góc BAE chung
AE=AD
Do đó: ΔABE=ΔACD
c: Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
=>ΔOBC cân tại O
Ta có: AB=AC
OB=OC
Do đó: AO là đường trung trực của BC(1)
=>AO đi qua trung điểm của BC
d: Xét ΔABI vuông tại B vàΔACI vuông tại I có
AI chug
AB=AC
Do đó: ΔABI=ΔACI
Suy ra: IB=IC
hay I nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,O,I thẳng hàng