Tìm n thuộc N biết :
a,32-n.16n=1024
b,3n-1+5.3n-1=162
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919
Ta có
20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn) (∗)(∗)
Mặt khác
20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1
và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17 (∗∗)(∗∗)
Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm
Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919
Ta có
20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn) (∗)(∗)
Mặt khác
20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1
và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17 (∗∗)(∗∗)
Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm
a, Để \(n\in Z\)
Ta có : \(3n+2⋮2n-1\)
\(6n-3n+2⋮2n-1\)
\(3\left(2n-1\right)+2⋮2n-1\)
Vì 2 \(⋮\)2n-1 hay 2n-1\(\in\)Ư'(2)={1;-1;-2;2}
Ta có bảng
2n-1 | -1 | 1 | 2 | -2 |
2n | 0 | 2 | 3 | -1 |
n | 0 | 1 | 3/2 | -1/2 |
Vậy n = {0;1}
\(b,\frac{n+3}{n-7}=\frac{n-7+10}{n-7}=1+\frac{10}{n-7}\)
=> 10 chia hết cho n - 7
=> n - 7 thuộc Ư\((10)\)
=> n - 7 \(\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Lập bảng :
n - 7 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 8 | 6 | 9 | 5 | 12 | 2 | 17 | -3 |
a, 5n+5n+2=650
=>5n+5n.52=650
=>5n(1+25)=650
=>5n.26=650
=>5n=25
=>5n=52
=>n=2
Vậy n=2
a) 3n+2 chia hết n-1
=>3n-3+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 thuộc Ư(5)={-1;1;-5;5}
=>n thuộc {0;2;-4;6}
b) 3n+24 chia hết n-4
=>3n-12+36 chia hết cho n-4
=>36 chia hết cho n-4
=>n-4 thuộc Ư(36)={-1;1;-2;2;-3;3;-4;4;-6;6;-9;9;-12;12;-18;18;-36;36}
=>n thuộc{3;5;2;6;1;7;0;8;-2;10;-5;13;-8;16;-14;22;-32;40}
a)3n+2 chia hết cho n-1
=>3.(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 E Ư(5)={-5;-1;1;5}
=>n E {-4;0;2;6}
b)3n+24 chia hết cho n-4
=>3.(n-4)+36 chia hết cho n-4
=>36 chia hết cho n-4
=>n-4 E Ư(36)={-36;-18;-12;-9;-6;-4;-3;-2;-1;1;2;3;4;6;9;12;18;36}
=>n E {..} (bn tự liệt kê nhé)
vậy...