K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

a) 332017+332018=332016.33+332016.332

=332016.(33+332)=332016.1122⋮374

c)Muốn M nhỏ nhất thì \(12\left(x-2\right)^2+3\)đạt GT dương nhỏ nhất=> 12(x-2)2 đạt GT dương nhỏ nhất=> (x-2)2 đạt GT dương nhỏ nhất => (x-2)2=0

Thay vào M ta được M = 1/3.

7 tháng 11 2017

thế còn phần b thì sao bạn

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu 5. Cho a + b =...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

Câu 11. Tìm các giá trị của x sao cho:

a) |2x – 3| = |1 – x|

b) x2 – 4x ≤ 5

c) 2x(2x – 1) ≤ 2x – 1.

Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)

Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.

Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.

Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

Câu 16. Tìm giá trị lớn nhất của biểu thức:

Câu 17. So sánh các số thực sau (không dùng máy tính):

Câu 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn √2 nhưng nhỏ hơn √3

Câu 19. Giải phương trình: .

Câu 20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4.

Câu 21. Cho .

Hãy so sánh S và .

Câu 22. Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.

Câu 23. Cho các số x và y cùng dấu. Chứng minh rằng:

Câu 24. Chứng minh rằng các số sau là số vô tỉ:

Câu 25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?

Câu 26. Cho các số x và y khác 0. Chứng minh rằng:

 

Câu 27. Cho các số x, y, z dương. Chứng minh rằng: 

 

Câu 28. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.

Câu 29. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 32. Tìm giá trị lớn nhất của biểu thức: 

Câu 33. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.

Câu 34. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.

Câu 35. Tìm giá trị lớn nhất của: A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0; x + y + z = 1.

Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠ 0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)

Câu 37. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 38. Cho a, b, c, d > 0. Chứng minh:

 

Câu 39. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 40. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

Câu 41. Tìm các giá trị của x để các biểu thức sau có nghĩa:

Câu 42.

a) Chứng minh rằng: | A + B | ≤ | A | + | B |. Dấu “ = ” xảy ra khi nào?

b) Tìm giá trị nhỏ nhất của biểu thức sau: .

c) Giải phương trình: 

Câu 43. Giải phương trình: .

Câu 44. Tìm các giá trị của x để các biểu thức sau có nghĩa:

 

4
27 tháng 2 2017

sao dài thế @@ chộp bài nào làm bài nấy ha

Câu 1:

Giả sử \(\sqrt{7}\) là số hữu tỉ thì \(\sqrt{7}=\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản, a;b thuộc Z, b khác 0

\(\frac{a}{b}=\sqrt{7}\Rightarrow\left(\frac{a}{b}\right)^2=7\Rightarrow\frac{a^2}{b^2}=7\Rightarrow a^2=7b^2\)=> a2 chia hết cho 7 (1)

=> a chia hết cho 7 => a=7k với k thuộc Z

Thay a=7k vào a2=7b2 ta được 49k2=7b2 => 7k2=b2 => b2 chia hết cho 7 => b chia hết cho 7 (2)

Từ (1) và (2) => phân số a/b chưa tối giản trái với giả thiết ban đầu

=>\(\sqrt{7}\) là số vô tỉ (đpcm)

27 tháng 2 2017

Ta có: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2acbd+b^2d^2+a^2d^2-2adbc+b^2c^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\) (1)

Mặt khác: \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\) (2)

Từ (1) và (2) => đpcm

Câu 1. Chứng minh √7 là số vô tỉCâu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu 5. Cho a + b =...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

Câu 11. Tìm các giá trị của x sao cho:

a) |2x – 3| = |1 – x|

b) x2 – 4x ≤ 5

c) 2x(2x – 1) ≤ 2x – 1.

Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)

Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.

Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.

Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

Câu 16. Tìm giá trị lớn nhất của biểu thức:

Câu 17. So sánh các số thực sau (không dùng máy tính):

Câu 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn √2 nhưng nhỏ hơn √3

Câu 19. Giải phương trình: .

Câu 20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4.

Câu 21. Cho .

Hãy so sánh S và .

Câu 22. Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.

Câu 23. Cho các số x và y cùng dấu. Chứng minh rằng:

Câu 24. Chứng minh rằng các số sau là số vô tỉ:

Câu 25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?

Câu 26. Cho các số x và y khác 0. Chứng minh rằng:

 

Câu 27. Cho các số x, y, z dương. Chứng minh rằng: 

 

Câu 28. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.

Câu 29. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 32. Tìm giá trị lớn nhất của biểu thức: 

Câu 33. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.

Câu 34. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.

Câu 35. Tìm giá trị lớn nhất của: A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0; x + y + z = 1.

Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠ 0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)

Câu 37. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 38. Cho a, b, c, d > 0. Chứng minh:

 

Câu 39. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 40. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

Câu 41. Tìm các giá trị của x để các biểu thức sau có nghĩa:

Câu 42.

a) Chứng minh rằng: | A + B | ≤ | A | + | B |. Dấu “ = ” xảy ra khi nào?

b) Tìm giá trị nhỏ nhất của biểu thức sau: .

c) Giải phương trình: 

Câu 43. Giải phương trình: .

Câu 44. Tìm các giá trị của x để các biểu thức sau có nghĩa:

 

4
11 tháng 4 2017

Câu 1: 

Giả sử \(\sqrt{7}\) là số hữu tỉ \(\Rightarrow\sqrt{7}=\frac{m}{n}\) (tối giản)

\(\Rightarrow7=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\) Hay \(7n^2=m^2\left(1\right)\)

Đẳng thức này chứng tỏ \(m^2⋮7\) Mà \(7\) là số nguyên tố nên \(m⋮7\)

Đặt \(m=7k\left(k\in Z\right)\) ta có: \(m^2=49k^2\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(7n^2=49k^2\) nên \(n^2=7k^2\left(3\right)\)

Từ \(\left(3\right)\) ta lại có: \(n^2⋮7\) và vì \(7\) là số nguyên tố nên \(n⋮7\)

\(\Rightarrow\hept{\begin{cases}m⋮7\\n⋮7\end{cases}}\) nên phân số \(\frac{m}{n}\) không tối giản, trái với giả thiết

Vậy \(\sqrt{7}\) không phải là số hữu tỉ

\(\Leftrightarrow\sqrt{7}\) là số vô tỉ (Điều phải chứng minh)

3 tháng 2 2017

trời ơi nhìn hoa cả mắt

23 tháng 10 2020

đéo biết

24 tháng 10 2020

1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2

2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)

Đẳng thức xảy ra khi a = 1

3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)

4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)

Do đó \(a^{2018}+b^{2019}=1+1=2\)

5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)

3 tháng 7 2021

a, \(A=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)

Vậy \(Min=1\Leftrightarrow2017\le x\le2018\)

b, \(B=\dfrac{x^2+4+8}{x^2+4}=1+\dfrac{8}{x^2+4}\)

Thấy : \(x^2+4\ge4\)

\(\Rightarrow B=1+\dfrac{8}{x^2+4}\le3\)

Vậy \(Max=3\Leftrightarrow x=0\)

3 tháng 7 2021

là GTNN á

18 tháng 8 2017

\(x+2\sqrt{x}\) "+" hay "-" 1 vậy bạn?

25 tháng 8 2017

cộng mà thôi khỏi mik làm đc rồi

8 tháng 11 2016

 Bài 4:

x O y z m n

Giải:
Vì Om là tia phân giác của góc xOz nên:

mOz = 1/2.xOz

Vì On là tia phân giác của góc zOy nên:
zOn = 1/2 . zOy

Ta có: xOz + zOy = 180o ( kề bù )

=> 1/2(xOz + zOy) = 1/2 . 180o

=> 1/2.xOz + 1/2.zOy = 90o

=> mOz + zOn = 90o

=> mOn = 90o   (đpcm)

8 tháng 11 2016

Bài 2:
7^6 + 7^5 - 7^4 = 7^4.( 7^2 + 7 - 1 ) = 7^4 . 55 chia hết cho 55

Vậy 7^6 + 7^5 - 7^4 chia hết cho 55

A = 1 + 5 + 5^2 + ... + 5^50

=> 5A = 5 + 5^2 + 5^3 + ... + 5^51

=> 5A - A = ( 5 + 5^2 + 5^3 + ... + 5^51 ) - ( 1 + 5 + 5^2 + ... + 5^50 )

=> 4A = 5^51 - 1

=> A = ( 5^51 - 1 )/4

31 tháng 10 2021

Mn ơi ai bt làm câu nào thì giúp mik cậu đó với !!

31 tháng 10 2021

1. a. 

Ta có: 128 = (124)2 = 207362

Ta thấy: 20736 > 81

=> 128 > 812

(Các câu khác cũng tương tự nhé.)