Giải và biện luận các hệ phương trình
a)
b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: D = 1 − m m − 1 = m 2 − 1 ; D x = 0 − m m + 1 − 1 = m ( m + 1 ) ; D y = 1 0 m m + 1 = m + 1
Nếu D = 0 ⇔ m 2 - 1 = 0 ⇔ m = ± 1
Với m = 1 ⇒ D x ≠ 0 nên hệ phương trình vô nghiệm.
Với m = - 1 ⇒ D x = D y = 0 nên hệ phương trình có vô số nghiệm.
Đáp án cần chọn là: C
a: Thay m=-1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-y=3\cdot\left(-1\right)=-3\\-x-y=\left(-1\right)^2-2=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2y=-6\\x-y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=y-3=3-3=0\end{matrix}\right.\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}mx+\left(m+1\right)y=m+1\\my=2-2x\end{matrix}\right.\)
Nếu m=0 thì hệ sẽ là y=0+1=1 và 2-2x=0
=>y=1 và x=1
Nếu m<>0 thì \(\left\{{}\begin{matrix}y=\dfrac{-2x+2}{m}\\x\cdot m+\left(m+1\right)\cdot\dfrac{-2x+2}{m}=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot m+x\cdot\dfrac{-2\left(m+1\right)}{m}+\dfrac{2m+2}{m}=m+1\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot\left(m+\dfrac{-2m-2}{m}\right)=m+1-\dfrac{2m+2}{m}=\dfrac{m^2+m-2m-2}{m}=\dfrac{m^2-m-2}{m}\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot\dfrac{m^2-2m-2}{m}=\dfrac{m^2-m-2}{m}\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)
Nếu m^2-2m-2=0 thì hệ vô nghiệm
Nếu m^2-2m-2<>0 thì hệ sẽ có nghiệm duy nhất là:
\(\left\{{}\begin{matrix}x=\dfrac{m^2-m-2}{m^2-2m-2}\\y=-\dfrac{2}{m}\cdot\dfrac{m^2-m-2}{m^2-2m-2}+\dfrac{2}{m}=\dfrac{-2m^2+2m+4+2m^2-4m-4}{m\left(m^2-2m-2\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2-m-2}{m^2-2m-2}\\y=-\dfrac{2}{m^2-2m-2}\end{matrix}\right.\)
c: =>(m-1)x+2y=3m-1 và (2m+2)x-2y=2-2m
=>(3m+1)x=m+1 và y=(m+2)x+m-1
Nếu m=-1/3 thì hệ vô nghiệm
Nếu m<>-1/3 thì hệ sẽ có nghiệm duy nhất là:
\(\left\{{}\begin{matrix}x=\dfrac{m+1}{3m+1}\\y=\dfrac{m^2+3m+2}{3m+1}+m-1=\dfrac{m^2+3m+2+3m^2-3m+m-1}{3m+1}=\dfrac{4m^2+m+1}{3m+1}\end{matrix}\right.\)
a) Thay m = 1 vào hệ ta được hê phương trình:
-2x + y = 5
x + 3y = 1
=> -2x+ y = 5
2x + 6y = 2
Cộng từng vế của pt ta được:
7y = 7 => y = 1 => x = -2
Vậy (x;y) = (-2;1)
b) Từ PT thứ nhất trong hệ => y = 2mx + 5. Thế vapf PT thứ hai ta được: mx + 3. (2mx +5) = 1
<=> 7mx = -14 <=> mx = -2 (*)
+) Nếu m \(\ne\) 0 <=> (*) có nghiệm là x = -2/m => y = 1
Khi đó, hệ có nghiệm là (-2/m; 1)
+) Nếu m = 0 thì (*) <=> 0 = -2 Vô lí => (*) vô nghiệm <=> Hệ vô nghiệm
Vậy.................
c) Với m \(\ne\) 0 thì hệ có nghiệm x = -2/m và y = 1
Để x - y = 2 <=>( -2/m )- 1 = 2 <=> (-2/m) = 3 <=> m = -2/3 ( Thỏa mãn)
Vậy...................
a
Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m}< >\dfrac{m}{2}\)
=>m^2<>2m-2
=>m^2-2m+2<>0(luôn đúng)
Để hệ có vô sô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}=\dfrac{m+1}{2}\)
=>2m=2m+2 và 2m-2=m^2+m
=>m^2+m-2m+2=0 và 0m=2(loại)
Để hệ vô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}< >\dfrac{m+1}{2}\)
=>m^2=2m-2 và 2m<>2m+2
=>0m<>2 và m^2-2m+2=0(loại)
b: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m+2}< >\dfrac{m-2}{m+1}\)
=>m^2+m<>m^2-4
=>m<>-4
Để hệ có vô số nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}=\dfrac{5}{2}\)
=>m^2+m=m^2-4 và 2m=5m+10
=>m=-4 và m=-10/3(loại)
Để hệ vô nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}< >\dfrac{5}{2}\)
=>m=-4 và m<>-10/3(nhận)
c: Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m+2}< >-\dfrac{2}{1}=-2\)
=>-2m-4<>m-1
=>-3m<>3
=>m<>-1
Để hệ vô nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)
=>2m+4=-m+1 và 2-2m<>-3m+1
=>3m=-3 và m<>-1
=>m=-1 và m<>-1(loại)
Để hệ có vô số nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)
=>m=-1
Xin lỗi chị, em ko biết làm em mới lớp 6 thooy ạ. Nhưng em rất muốn đc 1 k nhưng lại ko biết làm ạ. Huhu T^T
#Army