K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018
https://i.imgur.com/yw2PEGF.gif
NV
27 tháng 2 2021

a.

ĐKXĐ: \(x;y\ge-1;xy\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-3=\sqrt{xy}\\x+y+2\sqrt{xy+x+y+1}=14\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\ge0\end{matrix}\right.\) với \(u^2\ge4v\) 

\(\Rightarrow\left\{{}\begin{matrix}u-3=\sqrt{v}\\u+2\sqrt{u+v+1}=14\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-6u+9\left(u\ge3\right)\\4\left(u+v+1\right)=\left(14-u\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\4u+4\left(u^2-6u+9\right)+4=\left(14-u\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\3u^2+8u-156=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\\left[{}\begin{matrix}u=6\\u=-\dfrac{26}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=6\\v=9\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=9\end{matrix}\right.\) \(\Rightarrow x=y=3\)

NV
27 tháng 2 2021

b.

ĐKXĐ: \(x;y\ge1\)

Xét \(\sqrt{x-1}+\sqrt{y-1}=3\)

\(\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=9\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=\dfrac{11-x-y}{2}\)

Thế vào pt đầu:

\(x+y=5+\dfrac{11-x-y}{2}\)

\(\Leftrightarrow x+y=7\Rightarrow y=7-x\)

Thế xuống pt dưới:

\(\sqrt{x-1}+\sqrt{6-x}=3\)

\(\Leftrightarrow5+2\sqrt{\left(x-1\right)\left(6-x\right)}=9\)

\(\Leftrightarrow\left(x-1\right)\left(6-x\right)=4\)

\(\Leftrightarrow...\)

14 tháng 3 2021

\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{xy}+\sqrt{y}=11+12\sqrt{13}\\x+y=134\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)=12+12\sqrt{13}\\x+y=134\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}+1=a\\\sqrt{y}+1=b\end{matrix}\right.\) \(\left(a,b>0\right)\)

\(Hpt\Leftrightarrow\left\{{}\begin{matrix}ab=12+12\sqrt{13}\\a^2+b^2-2\left(a+b\right)+2=134\end{matrix}\right.\)

\(\Leftrightarrow a^2+b^2+2ab-2\left(a+b\right)+1=134+12+12\sqrt{13}-1\)

\(\Leftrightarrow\left(a+b\right)^2-2\left(a+b\right)+1=145+12\sqrt{13}\)

\(\Leftrightarrow\left(a+b-1\right)^2=145+12\sqrt{13}\)

\(\Leftrightarrow a+b=\sqrt{145+12\sqrt{13}}+1\)

\(Hpt\Leftrightarrow\left\{{}\begin{matrix}ab=12+12\sqrt{13}\\a+b=\sqrt{145+12\sqrt{13}}+1\end{matrix}\right.\)

Số xấu quá nên dừng tại đây :D

14 tháng 3 2021

Khúc cuối ra vô nghiệm, lo gì=))

23 tháng 8 2018

Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)

Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)

=> hpy vô nghiệm

23 tháng 8 2018

c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)

Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt

\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)

với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)

đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !

AH
Akai Haruma
Giáo viên
6 tháng 1 2020

Lời giải:

ĐK: $xy\geq 0$

Xét PT $(1)$:

\(x+y=1+\sqrt{xy}(*)\Rightarrow (x+y)^2=(1+\sqrt{xy})^2\)

\(\Leftrightarrow x^2+y^2=1+2\sqrt{xy}-xy=2-(\sqrt{xy}-1)^2\leq 2\)

Xét PT $(2)$:

Áp dụng BĐT AM-GM:

\(\sqrt{x^2+3}+\sqrt{y^2+3}\leq \frac{4+(x^2+3)}{4}+\frac{4+(y^2+3)}{4}=\frac{14+x^2+y^2}{4}\leq \frac{14+2}{4}=4\)

Dấu "=" xảy ra khi : \(\left\{\begin{matrix} \sqrt{xy}-1=0\\ x^2+3=4\\ y^2+3=4\end{matrix}\right.\Rightarrow x=y=\pm 1\)

Mặt khác từ $(*)$ suy ra $x+y>0$ nên $x=y=1$ là đáp án cuối cùng.

Akai Haruma Vũ Minh Tuấn buithianhtho giúp e với ạ

NV
18 tháng 2 2020

a/ \(\left\{{}\begin{matrix}\left(x^2+x\right)+\left(y^2+y\right)=18\\\left(x^2+x\right)\left(y^2+y\right)=72\end{matrix}\right.\)

Theo Viet đảo, \(x^2+x\)\(y^2+y\) là nghiệm của:

\(t^2-18t+72=0\Rightarrow\left[{}\begin{matrix}t=12\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=12\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=12\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\left\{2;-3\right\}\\y=\left\{3;-4\right\}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\left\{3;-4\right\}\\y=\left\{2;-3\right\}\end{matrix}\right.\end{matrix}\right.\)

NV
18 tháng 2 2020

b/ ĐKXĐ: ...

\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\x=\frac{3y-1}{y}\end{matrix}\right.\)

Nhận thấy \(y=\frac{1}{3}\) không phải nghiệm

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\\frac{1}{x}=\frac{y}{3y-1}\end{matrix}\right.\) \(\Rightarrow\frac{y}{3y-1}+\frac{1}{y+1}=1\)

\(\Leftrightarrow y\left(y+1\right)+3y-1=\left(3y-1\right)\left(y+1\right)\)

\(\Leftrightarrow y^2-y=0\Rightarrow\left[{}\begin{matrix}y=0\left(l\right)\\y=1\end{matrix}\right.\) \(\Rightarrow x=2\)