tam giác ABC cân ở A và \(\widehat{A} \)=20\(\) độ. trên nửa mặt phẳng bờ AC ko chứa B vẽ tia Cx sao cho \(\widehat{ACX}\)= 60 độ . trên Cx lấy điểm D sao cho CD=CB. tính \(\widehat{ADC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: `Cx////AB=>` \(\left\{{}\begin{matrix}\widehat{BCx}=\widehat{B}\left(\text{so le trong}\right)\\\widehat{DCx}=\widehat{A}\left(\text{đồng vị}\right)\end{matrix}\right.\)
Mà `\hatA=\hatB` (GT)
`=> \hat(BCx)=\hat(DCx)`
`=> Cx` là phân giác `\hat(DCB)`.
Ta có: \(\widehat{DCx}=\widehat{CAB}\)(hai góc đồng vị, Cx//AB)
\(\widehat{BCx}=\widehat{CBA}\)(hai góc so le trong, Cx//AB)
mà \(\widehat{CAB}=\widehat{CBA}\)
nên \(\widehat{DCx}=\widehat{BCx}\)
hay Cx là tia phân giác của \(\widehat{DCB}\)
a) Ta có: mà hai góc đó là hai góc so le trong nên
suy ra (1)
mà hai góc đó là hai góc so le trong nên suy ra (2)
Từ (1) và (2) suy ra Ax và Ay cùng // BC.
Lại có tia Ax thuộc mặt phẳng bờ AB có chứa điểm C, tia Ay thuộc mặt phẳng
bờ AB không chứa điểm C
Ax và Ay là hai tia đối nhau.
b) Vì Ax và Ay là hai tia đối nhau (cmt) mà và
nên suy ra
Mà nên suy ra