K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

\(\left(n-5\right)⋮\left(n-2\right)\)

=> \(\left(n-5\right)-\left(n-2\right)⋮\left(n-2\right)\)

=> \(\left(n-5-n+2\right)⋮\left(n-2\right)\)

=> \(-3⋮\left(n-2\right)\)

=> n-2\(\inƯ\left(-3\right)\) ={\(\pm1,\pm3\) }

ta có bảng sau

n-2 -1 1 -3

3

n 1 3 -1 5
tm tm loại tm

vậy n\(\in\left\{1;3;5\right\}\)

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

30 tháng 7 2021

 . .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

6 tháng 1 2019

a) 2n - 4 ⋮ n - 3

2n - 6 + 2 ⋮ n - 3

2( n - 3 ) + 2 ⋮ n - 3

Vì 2( n - 3 ) ⋮ n - 3

=> 2 ⋮ n - 3

=> n - 3 thuộc Ư(2) = { 1; -1; 2; -2 }

=> n thuộc { 4; 2; 5; 1 }

Vậy,......

- Các câu còn lại tương tự

6 tháng 1 2019

\(a,2n-4⋮n-3\Leftrightarrow2n-6+2⋮n-3\)

\(\Leftrightarrow2\left(n-3\right)+2⋮n-3\Leftrightarrow2⋮n-3\left(n-3\inℤ\right)\)

\(\Leftrightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)\(\Leftrightarrow n\in\left\{2;4;1;5\right\}\)

Vậy \(n=1;2;4;5\)

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

15 tháng 7 2015

Đễ nhưng quá nhiều không đủ kiên nhẫn để làm. Bạn đăng lần lượt thôi.

2 tháng 2 2019

cậu nên đăng lần lượt thôi thì bọn tớ mới làm

15 tháng 8 2016

c) n2 + 1 chia hết cho n - 1 (n thuộc N, n khác 1)                                                                                                                                                            
\(\Rightarrow\frac{n^2+1}{n-1}\in N\Rightarrow\frac{n^2+1}{n-1}=\frac{n^2+n-n-1+2}{n-1}=\frac{n\left(n+1\right)-\left(n+1\right)+2}{n-1}=\frac{\left(n-1\right)\left(n+1\right)+2}{n-1}=n+1+\frac{2}{n-1}\in N\)
Mà \(n+1\in N\)\(\Rightarrow\frac{2}{n-1}\in N\Rightarrow\)2 chia hết cho n - 1
Từ đây bạn tự làm tiếp nha........

18 tháng 2 2018

dễ như toán lớp 6 vậy

10 tháng 8 2018

a) ta có: 3n + 2 chia hết cho n - 1

=> 3n - 3 + 5 chia hết cho n -1

3.(n-1) + 5 chia hết cho n - 1

mà 3.(n-1) chia hết cho n -1

=> 5 chia hết cho n - 1

=> n - 1 thuộc Ư(5)={1;-1;5;-5}

...

rùi bn tự lập bảng xét giá trị hộ mk nha!!!

b) ta có: n^2 + 2n + 7 chia hết cho n + 2

=> n.(n+2) + 7 chia hết cho n + 2

mà n.(n+2) chia hết cho n + 2

=> 7 chia hết cho n + 2

=>...

c) ta có: n^2 + 1 chia hết cho n - 1

=> n^2 - n + n -1 + 2 chia hết cho n - 1

n.(n-1) + (n-1) + 2 chia hết cho n -1

(n-1).(n+1) + 2 chia hết cho n - 1

mà (n-1).(n+1) chia hết cho n - 1

=> 2 chia hết cho n - 1

...

câu e;g bn dựa vào phần a mak lm nha!!!

\(d,n+8⋮n+3\)

\(\Leftrightarrow\left(n+3\right)+5⋮n+3\)

\(\Leftrightarrow n+3⋮n+3\Rightarrow5⋮n+3\)

\(\Leftrightarrow n+3\in\left(1;5\right)\)

\(\Leftrightarrow n+3=1\Rightarrow n=-2\left(l\right)\)

\(\Leftrightarrow n+3=5\Rightarrow n=2\left(c\right)\)