cho đường thẳng d , hai điểm A,B nằm cùng phía so với d . xác định điểm M để MA+MB nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Tìm điểm A’ đối xứng với A qua d
- Nối A’B cắt d tại M. M chính là điểm cần tìm.
- Thật vậy : Vì A’ đối xứng với A qua d cho nên MA=MA’. Do đó : MA+MB=MA’+MB=A’B .
- Giả sử tồn tại M’ khác M thuộc d thì : M’A+M’B=M’A’+M’B lớn hơn hoặc bằng A'B. Dấu bằng chỉ xảy ra khi A’M’B thẳng hàng. Nghĩa là M trùng với M’
Làm sao tìm được điểm đối xứng vậy bạn? Mình không hiểu rõ (trong mặt phẳng tọa độ nhà)
Ta có |MA − MB| ≥ 0 với một điểm M tùy ý và |MA − MB| = 0 chỉ với các điểm M mà MA = MB, tức là chỉ với các điểm M nằm trên đường trung trực của đoạn thẳng AB.
Mặt khác M phải thuộc d. Vậy M là giao điểm của đường thẳng d và đường trung trực của đoạn thẳng AB. Có giao điểm này vì AB không vuông góc với d.
Tóm lại: Khi M là giao điểm của d và đường trung trực của đoạn thẳng AB thì |MA − MB| đạt giá trị nhỏ nhất và bằng 0.
Vì AB không song song với d nên AB cắt d tại N.
Với điểm M bất kỳ thuộc d mà M không trùng với N thì ta có tam giác MAB.
Theo hệ quả bất đẳng thức tam giác ta có:
|MA−MB| < AB
Khi M ≡ N thì
|MA−MB|= AB
Vậy |MA−MB| lớn nhất là bằng AB, khi đó M ≡ N là giao điểm của hai đường thẳng d và AB.
Vì điểm M cách đều hai điểm A và B nên M thuộc đường trung trực của đoạn thẳng AB.
Vậy điểm M là giao điểm của đường thẳng d với đường trung trực của AB.
Ta có \(\left|MA-MB\right|\ge0\) với một điểm M tùy ý và \(\left|MA-MB\right|=0\) chỉ với các điểm M mà MA = MB, tức là chỉ với các điểm M nằm trên đường trung trực của đoạn thẳng AB.
Mặt khác M phải thuộc d. Vậy M là giao điểm của đường thẳng d và đường trung trực của đoạn thẳng AB. Có giao điểm này vì AB không vuông góc với d.
Tóm lại: Khi M là giao điểm của d và đường trung trực của đoạn thẳng AB thì \(\left|MA-MB\right|\) đạt giá trị nhỏ nhất và bằng 0.
Ta có `:|MA-MB|>=0` với `1` điểm `M` tuỳ ý và `|MA-MB|=0` chỉ với các điểm `M` mà `MA=MB` , tức là chỉ với các điểm `M` nằm trên đg trung trực đoạn thẳng `AB`
Mặt khác , `M in d` . Vậy `M ` là giao điểm của đg thẳng `d` và đg trung trực của đoạn thẳng `AB` . Có giao điểm này vì `AB` không vuông góc với `d`
Tóm lại : Khi `M` là giao điểm của `d` và đg trung trực của `AB` thì `|MA-MB|` đạt giá trị nhỏ nhất và `=0`
Vẽ điểm C đối xứng với B qua đường thẳng d, giả sử tìm được điểm M trên d thì MB = MC ( 1 ).
Do A, B, d cố định nên C cũng cố định suy ra độ dài đoạn AC không đổi.
Áp dụng bất đẳng thức tam giác ta có vào Δ AMC ta được: MA + MC ≥ AC ( 2 )
Dấu bằng xảy ra khi M nằm giữa A và C hay M là giao điểm của AC và đường thẳng d
Từ ( 1 ) và ( 2 ) suy ra MA + MB nhỏ nhất bằng AC khi M là giao điểm của AC và đường thẳng d
Vẽ điểm C đối xứng với B qua đường thẳng d, giả sử tìm được điểm M trên d thì MB = MC ( 1 ).
Do A, B, d cố định nên C cũng cố định suy ra độ dài đoạn AC không đổi.
Áp dụng bất đẳng thức tam giác ta có vào Δ AMC ta được: MA + MC ≥ AC ( 2 )
Dấu bằng xảy ra khi M nằm giữa A và C hay M là giao điểm của AC và đường thẳng d
Từ ( 1 ) và ( 2 ) suy ra MA + MB nhỏ nhất bằng AC khi M là giao điểm của AC và đường thẳng d