Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AB không song song với d nên AB cắt d tại N.
Với điểm M bất kỳ thuộc d mà M không trùng với N thì ta có tam giác MAB.
Theo hệ quả bất đẳng thức tam giác ta có:
|MA−MB| < AB
Khi M ≡ N thì
|MA−MB|= AB
Vậy |MA−MB| lớn nhất là bằng AB, khi đó M ≡ N là giao điểm của hai đường thẳng d và AB.
Mọi người làm nhanh jup mik nhé, ai có đáp án sẽ k luôn. Kamsa =)
Vì AB không song song với d nên AB cắt d tại N
Với \(M\in d\) thì ta có ΔMAB
Xét ΔMAB có |MA-MB|<AB
Nếu M trùng với N thì |MA-MB|=AB
=>Để |MA-MB| lớn nhất thì M trùng với N
Lấy D là điểm đối xứng, với A qua d. Theo tính chất đường trung trực: CA = CD.
Do đó CA + CB = CD + CB.
Gọi M là giao điểm của BD và d.
Nếu C không trùng với M thì xét tam giác BCD, ta có: CB + CD > BD hay CA + CB > BD (1).
Nếu C trùng với M thì:
CA + CB = MA + MB = MD + MB = BD (2).
So sánh (1) và (2) ta thấy điểm C trùng M hay C là giao điểm của BD và d thì giá trị của tổng CA + CB là nhỏ nhất.
Chú ý: Điểm C tìm được ở vị trí M như vậy là điểm duy nhất. Thật vậy, nếu lấy E đối xứng với B qua d thì AE vẫn cắt d ở M đúng vị trí mà BD cắt d.
* Nếu AB không vuông góc với d
- Vì điểm C cách đều hai điểm A và B nên C nằm trên đường trung trực của AB.
- Điểm C ∈ d
Vậy C là giao điểm của đường trung trực của AB và đường thẳng d.
Cần dựng đường thẳng m là đường trung trực của đoạn thẳng AB cắt đường thẳng d tại C.
Vậy C là điểm cần tìm.
* Nếu AB vuông góc với d
Khi đó đường trung trực của AB song song với đường thẳng d nên không tồn tại điểm C.
Vì điểm M cách đều hai điểm A và B nên M thuộc đường trung trực của đoạn thẳng AB.
Vậy điểm M là giao điểm của đường thẳng d với đường trung trực của AB.