Cho\(\frac{a+b}{b+c}=\frac{c+d}{d+a}vàa\ne c\)
CMR:a+b+c+d=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ad+a^2 +bd+ab= bc+bd+c^2 +cd
=>ad+a^2+bd+ab-bc-bd-c^2-cd=0
=>ad+a^2+ab-bc-c^2-cđ=0
a(a+d+b)-c(b+c+d)=0
=>a+d+b=0 và b+c+d=0
a+b+c+d=0
Theo đề: \(\frac{a}{5b}=\frac{b}{5c}=\frac{c}{5d}=\frac{d}{5a}\)
=> \(\frac{1}{5}.\frac{a}{b}=\frac{1}{5}.\frac{b}{c}=\frac{1}{5}.\frac{c}{d}=\frac{1}{5}.\frac{d}{a}\)
=> \(\frac{1}{5}.\frac{a}{b}.5=\frac{1}{5}.\frac{b}{c}.5=\frac{1}{5}.\frac{c}{d}.5=\frac{1}{5}.\frac{d}{a}.5\)
=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)(do \(a+b+c+d\ne0\))
Từ \(\frac{a}{b}=1\Rightarrow a=b\)(1)
Từ \(\frac{b}{c}=1\Rightarrow b=c\)(2)
Từ \(\frac{c}{d}=1\Rightarrow c=d\)(3)
Từ \(\frac{d}{a}=1\Rightarrow d=a\)(4)
Từ (1), (2), (3) và (4) suy ra : a = b = c = d (đpcm)
Giả sử \(a>b\),ta có:
\(\frac{a}{5b}=\frac{b}{5c}\Rightarrow5b>5c\Rightarrow b>c\)vì \(a>b\)
\(\frac{b}{5c}=\frac{c}{5d}\Rightarrow5c>5d\Rightarrow c>d\)vì \(b>c\)
\(\frac{c}{5d}=\frac{d}{5a}\Rightarrow5d>5a\Rightarrow d>a\)vì \(c>d\)
Từ 4 dòng trên \(\Rightarrow a>b>c>d\)
\(\frac{a}{5b}=\frac{d}{5a}\Rightarrow5b< 5a\Rightarrow b< a\)vì \(a>d\)
\(\Rightarrow\)Với \(a>b\)thì không thỏa mãn.
Chứng minh tương tự với \(a< b\)thì ta lại thấy vô lý vì \(a>b\)
\(a>b;a< b\)vô lý thì \(a=b\)thỏa mãn.
\(\frac{a}{5b}=\frac{b}{5c}\Rightarrow5b=5c\Rightarrow b=c\)vì \(a=b\)
\(\frac{b}{5c}=\frac{c}{5d}\Rightarrow5c=5d\Rightarrow c=d\)vì \(b=c\)
\(\frac{c}{5d}=\frac{d}{5a}\Rightarrow5d=5a\Rightarrow d=a\)vì \(c=d\)
Theo tính chất Bắc-Cầu thì ta kết luận được \(a=b=c=d\left(đpcm\right)\)
\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\); \(\frac{a}{b} = \frac{c}{d} = \frac{{a + 2c}}{{b + 2d}}\)
Như vậy, \(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\) (đpcm)
Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1.\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)
\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)
Nếu \(a+b+c+d\ne0.\)
\(\Rightarrow c+d=d+a\)
\(\Rightarrow c=a\left(đpcm1\right).\)
Nếu \(a+b+c+d=0\) thì hợp với đề.
\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)
Chúc bạn học tốt!
áp dụng tính chất dẫy tỉ số = nhau ta được
b+c+d/a=c+d+a/b=a+b+d/c=a+b+c/d= b+c+d+c+d+a+a+b+d+a+b+c / a+b+c+d = 3
do b+c+d/a=c+d+a/b=a+b+d/c=a+b+c/d = k
suy ra k =3 .đơn giản vậy thôi
Có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\left(1\right)\\ \Rightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\frac{a-b}{c-d}=\frac{ck-dk}{c-d}=\frac{k\left(c-d\right)}{c-d}=k\left(2\right)\)
(1)(2) \(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có
\(VT:\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{b^{2018}\cdot k^{2018}+d^{2018}\cdot k^{2018}}{b^{2018}+d^{2018}}=\frac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\)
\(VP:\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{k^{2018}\cdot\left(b+d\right)^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\)
\(\Rightarrow VT=VP\)
Hay \(\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\left(đpcm\right)\)
Ta có : a+b/b+c = c+d/d+a
=> (a+b)/(c+d)= (b+c)/(d+a)
=> (a+b)/(c+d)+1=(b+c)/(d+a)+1
hay: (a+b+c+d)/(c+d)=(b+c+d+a)/(d+a)
- Nếu a+b+c+d khác 0 thì : c+d=d+a => c=a
- Nếu a+b+c+d = 0 (điều phải chứng minh)