K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

Xin được mạn phép chữa đề.

\(\text{c) }\dfrac{x+2}{x+1}=\dfrac{\left(x+2\right)\left(x-1\right)}{x^2-1}\)

\(\text{Ta có : }\dfrac{\left(x+2\right)\left(x-1\right)}{x^2-1}=\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+2}{x+1}\left(đpcm\right)\)

Vậy.......................

25 tháng 10 2018

c) x+2x+1=(x+2)(x−1)x2−1c) x+2x+1=(x+2)(x−1)x2−1

Ta có : (x+2)(x−1)x2−1=(x+2)(x−1)(x−1)(x+1)=x+2x+1(đpcm)

Vậy

5 tháng 11 2017

Bài 1: (Sgk/36):

a. \(\dfrac{5y}{7}\)=\(\dfrac{20xy}{28x}\)

5y . 28x = 140xy

7 . 20xy = 140xy

=> 5y . 28x = 7 . 20xy

Vậy \(\dfrac{5y}{7}\)=\(\dfrac{20xy}{28x}\)

b. \(\dfrac{3x\left(x+5\right)}{2\left(x+5\right)}\)=\(\dfrac{3x}{2}\)

3x . 2(x+5) = 6x2+30x

2 . 3x(x+5) = 6x2+30x

=> 3x . 2(x+5) = 2 . 3x(x+5)

Vậy \(\dfrac{3x\left(x+5\right)}{2\left(x+5\right)}\)=\(\dfrac{3x}{2}\)

c. \(\dfrac{x+2}{x-1}\)=\(\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}\)

(x+2) (x2-1) = (x+2) (x-1) (x-1)

=> (x+2) (x2-1) = (x-1) (x+2) (x+1)

Vậy \(\dfrac{x+2}{x-1}\)=\(\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}\)

d. \(\dfrac{x^2-x-2}{x+1}\)=\(\dfrac{x^2-3x+2}{x-1}\)

(x-1) (x2-x-2) = x3-2x2-x+2

(x+1) (x2-3x+2) = x3-2x2-x+2

=> (x-1) (x2-x-2) = (x2-3x+2) (x+1)

Vậy \(\dfrac{x^2-x-2}{x+1}\)=\(\dfrac{x^2-3x+2}{x-1}\)

3 tháng 11 2017

\(\dfrac{x+2}{x-1}=\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}\)

\(\Rightarrow\left(x+2\right)\left(x^2-1\right)=\left(x-1\right)\left(x+2\right)\left(x+1\right)\)

\(\Rightarrow\left(x+2\right)\left(x^2-1\right)=\left(x+2\right)\left(x^2-1\right)\)

-> đpcm.

9 tháng 1 2018

Ta có:

(x+y).9x2.(x+y)=9x2.(x+y)2

3x.3x.(x+y)2=9x2.(x+y)2

=>(x+y).9x2.(x+y)=3x.3x.(x+y)2

=>\(\dfrac{x+y}{3x}=\dfrac{3x\left(x+y\right)^2}{9x^2.\left(x+y\right)}\)

Cách khác :

Ta có :

\(\dfrac{3x\left(x+y\right)^2}{9x^2\left(x+y\right)}=\dfrac{x+y}{3x}\)

Do : \(\dfrac{x+y}{3x}=\dfrac{x+y}{3x}\)

Nên...................

7 tháng 8 2021

a/ ĐK: $x\ne -5$

$\dfrac{6x^2+30x}{4}=\dfrac{6x(x+5)}{4}=\dfrac{3x(x+5)}{2}$ 

Đề này sai

b/ ĐK: $x\ne \pm 1$

$\dfrac{(x+2)(x+1)}{x^2-1}\\=\dfrac{(x+2)(x+1)}{(x-1)(x+1)}\\=\dfrac{x+2}{x-1}$

$\to$ ĐPCM

Câu a sai đề nhé.

7 tháng 5 2017

a. \(x^2y^3.35xy=5.7x^3y^4\)

\(\Leftrightarrow35x^3y^4=35x^3y^4\Rightarrowđpcm\)

\(b.x^2\left(x+2\right).\left(x+2\right)=x\left(x+2\right)^2.x\)

\(\Leftrightarrow x^2\left(x+2\right)^2=x^2\left(x+2\right)^2\Rightarrowđpcm\)

\(c.\left(3-x\right)\left(9-x^2\right)=\left(3+x\right)\left(x^2-6x+9\right)\)

\(\Leftrightarrow\left(3-x\right)\left(3-x\right)\left(3+x\right)=\left(3+x\right)\left(3-x\right)^2\)

\(\Leftrightarrow\left(3-x\right)^2\left(3+x\right)=\left(3-x\right)^2\left(3+x\right)\)

\(\Rightarrowđpcm\)

\(d.5\left(x^3-4x\right)=\left(10-5x\right)\left(-x^2-2x\right)\)

\(\Leftrightarrow5x^3-20x=5x^3-20x\Rightarrowđpcm\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

a) Ta có:

\(\begin{array}{l}3{\rm{x}}.10y = 30{\rm{xy}}\\{\rm{2}}{\rm{.15x}}y = 30{\rm{x}}y\end{array}\)

Suy ra: \(3{\rm{x}}.10 = 2.15{\rm{x}}y\) nên \(\dfrac{{3{\rm{x}}}}{2} = \dfrac{{15{\rm{x}}y}}{{10y}}\)

b) Ta có:

\(\begin{array}{l}\left( {3{\rm{x}} - 3y} \right).2 = 2.3\left( {x - y} \right) = 6\left( {x - y} \right)\\\left( { - 3} \right).\left( {2y - 2{\rm{x}}} \right) = \left( { - 3} \right).\left( { - 2} \right)\left( {x - y} \right) = 6\left( {x - y} \right)\end{array}\)

Suy ra: \(2.\left( {3{\rm{x}} - 3y} \right) = \left( { - 3} \right).\left( {2y - 2{\rm{x}}} \right)\) nên \(\dfrac{{3{\rm{x}} - 3y}}{{2y - 2{\rm{x}}}} = \dfrac{{ - 3}}{2}\)

c) Ta có: \(\begin{array}{l}\left( {{x^2} - x + 1} \right).x\left( {x + 1} \right) = x.\left( {x + 1} \right)\left( {{x^2} - x + 1} \right) = x.\left( {{x^3} + 1} \right)\\x.\left( {{x^3} + 1} \right)\end{array}\)

Suy ra: \(\left( {{x^2} - x + 1} \right).x.\left( {x + 1} \right) = x.\left( {{x^3} + 1} \right)\) nên \(\dfrac{{{x^2} - x + 1}}{x} = \dfrac{{{x^3} + 1}}{{x\left( {x + 1} \right)}}\)

\(B=\left(\dfrac{x+1}{x}\right)^2:\left[\dfrac{x^2+1}{x^2}+\dfrac{2}{x+1}\left(\dfrac{1}{x}+1\right)\right]\)

\(B=\dfrac{\left(x+1\right)^2}{x^2}:\left(\dfrac{x^2+1}{x^2}+\dfrac{2}{x+1}\cdot\dfrac{x+1}{x}\right)\)

\(B=\dfrac{\left(x+1\right)^2}{x^2}:\left(\dfrac{x^2+1}{x^2}+\dfrac{2}{x}\right)\)

\(B=\dfrac{\left(x+1\right)^2}{x^2}:\dfrac{x^2+1+2x}{x^2}\)

\(B=\dfrac{\left(x+1\right)^2}{x^2}\cdot\dfrac{x^2}{\left(x+1\right)^2}\)

\(B=1\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

Lời giải:

\(x^3y^2(xy^2)=x^3.x.y^2.y^2=x^4y^4\)

\(-3x^3y.\frac{1}{5}x^2y=\frac{-3}{5}x^3.x^2.y.y=\frac{-3}{5}x^5y^2\)

\(\frac{2}{5}x^3\frac{1}{2}(xy)^2=\frac{1}{5}x^3.x^2.y^2=\frac{1}{5}x^5y^2\)

\(\frac{1}{2}(xy)^2\frac{2}{5}(xy)^2=\frac{1}{5}x^2.x^2.y^2.y^2=\frac{1}{5}x^4y^4\)

Vậy các đơn thức phần a,b,c đồng dạng với nhau; đơn thức d và e đồng dạng với nhau.