Cho (O) hai bán kính OA \(\perp\)OB. Kẻ tia phân giác của góc AOB cắt (O) tại D. M là điểm chuyển động trên cung nhỏ AB. Từ M kẻ đường vuông góc với OB tại H cắt OD tại K. Chứng minh \(MH^2+KH^2khôngđổi\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
19 tháng 3 2020
a, xét tam giác ODA và tam giác ODB có : OD chung
^DOB = ^DOA do OD là pg của ^BOA (gt)
OA = OB (gt)
=> tam giác ODA = tam giác ODB (c-g-c)
b, t đoán đề là cm OD _|_ AB
tam giác ODA = tam giác ODB (câu a)
=> ^ODA = ^ODB (đn)
mà ^ODA + ^ODB = 180 (kb)
=> ^ODA = 90
=> OD _|_ AB
c, xét tam giác BOE và tam giác AOE có : OE chung
^BOD = ^AOD (câu a)
OB = AO (gt)
=> tam giác BOE = tam giác AOE (c-g-c)
=> EB = EA (đn) => E thuộc đường trung trực của AB
OB = OA (Gt) => O thuộc đường trung trực của AB
=> OE là trung trực của AB