Tìm a,b,c để ax3 + bx2 + c chia hết cho x-2 và chia cho x2 - 1 thì dư 2x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
Em tham khảo bài có cách làm tương tự ở link dưới đây:
Câu hỏi của Đặng Tuấn Anh - Toán lớp 9 - Học toán với OnlineMath
- Để hai đa thức trên chia cho nhau hết thì :\(\left\{{}\begin{matrix}7a-4=0\\b-2\left(1-3a\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7a=4\\6a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{4}{7}\\b=-\dfrac{10}{7}\end{matrix}\right.\)
Vậy ...
Ta có:
\(\left\{{}\begin{matrix}ax^3+bx^2+c=\left(x-2\right)\left(ax^2+\left(b+2a\right)x+2\left(b+2a\right)\right)+c+4\left(b+2a\right)\\ax^3+bx^2+c=\left(x^2-1\right)\left(ax+b\right)+ax+b+c\end{matrix}\right.\)
Từ đây ta có:
\(\left\{{}\begin{matrix}8a+4b+c=0\\a=2\\b+c=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-7\\c=12\end{matrix}\right.\)
Vì ax3 + bx2 + c chia hết cho x - 2 => ax3 + bx2 + c = P(x).(x - 2) (1)
Vì ax3 + bx2 + c chia cho x2 - 1 thì dư 2x + 5 => ax3 + bx2 + c = Q(x).(x2 - 1) + 2x + 5 = Q(x).(x - 1).(x + 1) + 2x + 5 (2)
+) Với x = 2 thì từ (1) ta có: 8a + 4b + c = 0
+) Với x = 1 thì từ (2) ta có a + b + c = 7
+) Với x = -1 thì từ (2) ta có -a + b - c = 1
Như vậy ta có hệ:
\(\left\{{}\begin{matrix}8a+4b+c=0\\a+b+c=7\\-a+b-c=1\end{matrix}\right.\)
Tự giải nốt