Phân tích đa thức thành nhân tử 2x\(^2\)+4ax+x+2a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ax - 2x - a2 + 2a
= ( ax - 2x ) - ( a2 - 2a )
= x ( a - 2 ) - a ( a - 2 )
= ( a - 2 ) ( x - a )
b) x2 + x - ax - a
= ( x2 + x ) - ( ax + a )
= x ( x + 1 ) - a ( x + 1 )
= ( x + 1 ) ( x - a )
Hok Tốt!!!
a) ax -2x- a2+ 2a
= (ax -2x ) -(a2 -2a )
= x(a-2) -a ( a-2 )
= (x-a) (a-2)
b) x2 +x -ax -a
=( x2 +x ) - ( ax +a )
= x( x+1 ) -a ( x+1 )
= ( x-a ) (x+ 1)
c) 2x2 +4ax +x +2a
=( 2x2 + 4ax ) + ( x+ 2a )
= 2x ( x+ 2a ) + ( x+2a )
= ( 2x +1 ) (x+2a )
d) 2xy -ax +x2 - 2ay
= (2xy -2ay ) + ( -ax + x2 )
= 2y( x-a ) + x ( x-a)
= ( 2y +x ) ( x -a )
a: 2x+4=2(x+2)
b: \(x^2+2xy+y^2-9=\left(x+y-3\right)\left(x+y+3\right)\)
2x^5-6x^4-2a^2x^3-6ax^3
=(2x^5-2a^2x^3)-(6x^4+6ax^3)
=2x^3(x^2-a^2)-6x^3(x+a)
=2x^3(x-a)(x+a)-6x^3(x+a)
=(x+a)(2x^4-2x^3a-6x^3)
=(x+a) 2x^3 (x-a-3)
\(ax-2x-a^2+2a\)
\(=\left(ax-2x\right)-\left(a^2-2a\right)\)
\(=x\left(a-2\right)-a\left(a-2\right)\)
\(=\left(a-2\right)\left(x-a\right)\)
\(x^2-4y^2-2x+1=\left(x-1\right)^2-4y^2=\left(x-1-2y\right)\left(x-1+2y\right)\)
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
`a^2 + ab + 2a + 2b = a(a+2) + b(a+2) = (a+b)(a+2)`
\(2x^2+4ax+x+2a\)
\(=2x\left(x+2a\right)+\left(x+2a\right)\)
\(=\left(x+2a\right)\left(2x+1\right)\)