1. Tìm các chữ số x,y để:
a.1\(y^3\)⋮21y3⋮2 và 9 b. y5yx⋮ 2 va 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Số đầu tiên là 13, số cuối cùng là 97, 2 số lien tiếp nhau cách nhau 4 đơn vị.
Số số hạng ở dãy đó là:
(97 - 13) : 4 + 1 = 22(số)
Tổng các số ở dãy đó là:
(97 + 13) . 22 : 2 = 1210
Đáp số: 1210
Bài 2:
b) Số đầu tiên là 107, số cuối cùng là 996, hai số liên tiếp nhau cách nhau 7 đơn vị
Số số hạng của dãy đó là:
(996 - 107) : 7 + 1 = 128(số)
Tổng của dãy đó là:
(996 + 107) . 128 : 2 = 70592
Đáp số: 70592
Trả lời
Các sô chia hết cho 9 là các số có tổng các chữ số chia hết cho 9
Các số chia hết cho 2 là các số có chữ số tận cùng là chữ số chẵn.
a)x32y
Thì y bắt buộc phải bằng một trong các số sau:0;2;4;6;8
Mà 3+2=5 Vậy ta xét các trường hợp
Nếu x=1 thì y sẽ bằng 3 không được.
Nếu x=2 thì y=2 (phù hợp)
Nếu x=3 thì y=1 không được
Nếu x=4 thì y=0(phù hợp)
Nếu x=5 thì y=8(phù hợp)
Nếu x=6 thì y=7(ko đc)
Nếu x=7 thì y=6
Ta cứ xét tiếp tục đến 9
ta có:\(A=\frac{8^9+12}{8^9+7}=\frac{8^9+7+5}{8^9+7}=\frac{8^9+7}{8^9+7}+\frac{5}{8^9+7}=1+\frac{5}{8^9+7}\)
\(B=\frac{8^{10}+4}{8^{10}-1}=\frac{8^{10}-1+5}{8^{10}-1}=\frac{8^{10}-1}{8^{10}-1}+\frac{5}{8^{10}-1}=1+\frac{5}{8^{10}-1}\)
vì 810-1>89+7
\(\Rightarrow\frac{5}{8^{10}-1}<\frac{5}{8^9+7}\)
\(\Rightarrow1+\frac{5}{8^{10}-1}<1+\frac{5}{8^9+7}\)
=>A<B
4,5C=9+99+999+...+99999...99(40 chữ số 9)
4,5C+40=(9+1)+(99+1)+...+(99999999....9+1)
4,5C+40=10+100+1000+...+1000000...00(40 chữ số 0)
4,5C+40=10+102+103+...+1040
4,5C+40=1041-10
C=(1041-10)-40:4,5
a, \(\overline{20x5}\) \(⋮\) 9 ⇔ 2 + 0 + 5 + \(x\) ⋮ 9 ⇔ \(x\) + 2 ⋮ 9 ⇒ \(x\) = 7
Vậy \(x=7\)
b, \(\overline{x998y}\) \(⋮\) 2; 3 và 5
\(\overline{x998y}\) \(⋮\) 2 và 5 ⇔ \(y\) = 0
\(\overline{x998y}\) \(⋮\) 3 ⇔ \(x+9+9+8\) +y ⋮ 3 ⇒ \(x\) + 2 ⋮ 3 ⇒ \(x\) = 1; 4; 7
Vậy các cặp \(x;y\) thỏa mãn đề bài lần lượt là:
(\(x;y\)) =(1; 0); (4; 0); (7; 0)
c, \(\overline{87xy}\) \(⋮\) 9 ⇔ 8 + 7 + \(x+y\) ⋮ 9 ⇒ \(x+y\) + 6 ⋮ 9
\(x-y=4\) ⇒ \(x=4+y\). Thay \(x\) = 4 + y vào biểu thức \(x+y+6\)⋮9
ta có: 4+\(y+y\) +6 \(⋮\) 9 ⇒ 1 + 2⋮ 9 ⇒ 2\(y\) = 8⇒ y =4; \(x\) = 4+4 =8
Vậy \(x=8;y=4\)
a, Thay các chữ x, y bởi các chữ số thích hợp để số 13 x 5 y chia hết cho 3 và cho 5
Ta xét 13 x 5 y chia hết cho 5thì b{0,5} mà 13 x 5 y cũng chia hết cho 3 nên ta có:
TH1: y = 0 thì 1+3+x+5+0 = 9+x chia hết cho 3.
Vì x ∈ {0,1,2,3,4,5,6,7,8,9} nên x nhận các giá trị là: 0; 3; 6; 9.
Ta được các số thỏa mãn đề bài là: 13050; 13350; 13650; 13950.
TH2: y = 5 thì 1+3+x+5+5 = 14+x chia hết cho 3.
Vì x ∈ {0,1,2,3,4,5,6,7,8,9} nên x nhận các giá trị là: 1; 4; 7.
Ta được các số thỏa mãn đề bài là: 13155, 13455, 13755.
Vậy các số cần tìm là: 13050, 13350, 13650, 13950, 13155, 13455, 13755.
b, Để 56 x 3 y chia hết cho 2 thì y ∈ {0,2,4,6,8}
Với y = 0 thì 5+6+x+3+0 = 14+x chia hết cho 9 nên x = 4
Với y = 2 thì 5+6+x+3+2 = 16+x chia hết cho 9 nên x = 2
Với y = 4 thì 5+6+x+3+4 = 18+x chia hết cho 9 nên x = 0; 9
Với y = 6 thì 5+6+x+3+6 = 20+x chia hết cho 9 nên x = 7
Với y = 8 thì 5+6+x+3+8 = 22+x chia hết cho 9 nên x = 5
Vậy các số cần tìm là: 56430; 56232; 56034; 56934; 56736; 56538