K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

\(\sin65^0=\cos25^0\)

\(\cos70^0=\sin20^0\)

\(\tan80^0=\cot10^0\)

\(\cot68^0=\tan22^0\)

Bài 1: 

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=1.8^2+2.4^2=3^2\)

hay BC=3cm

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2.4}{3}=\dfrac{4}{5}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1.8}{3}=\dfrac{3}{5}\)

\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2.4}{1.8}=\dfrac{4}{3}\)

\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{1.8}{2.4}=\dfrac{3}{4}\)

NV
10 tháng 9 2021

Tối thiểu em phải ghi đúng đề ra chứ. Đường cao là đường cao nào? H là điểm nào? Đó là những chi tiết trong đề còn thiếu

10 tháng 9 2021

dạ e cảm ơn ạ
hồi nãy e vội quá nên quên ghi ạ

 

11 tháng 9 2021

Kẻ AH vuông góc với BC

Trong tam giác vuông AHC ta có:

cosC=HC/AC⇒HC=cosC.AC=cos50.35≈22cm

⇒AH=√AC^2−HC^2=√35^2−22^2=√741cm

Trong tam giác vuông AHB ta có:

sinB=AH/AB⇒AB=AH/sinB=√741/sin60=2√247cm

⇒HB=√AB^2−AH^2=√(2√247)^2−741=√247cm

Vậy SABC=AH(HB+HC)/2=√741.(√247+22)/2≈513\(cm^2\)

NV
10 tháng 9 2021

1.

\(A+B+C=180^0\Rightarrow A=180^0-\left(B+C\right)=70^0\)

Kẻ đường cao BD

Trong tam giác vuông ABD:

\(cotA=\dfrac{AD}{BD}\Rightarrow AD=BD.cotA\)

Trong tam giác vuông BCD:

\(cotC=\dfrac{CD}{BD}\Rightarrow CD=BD.cotC\)

\(\Rightarrow AD+CD=BD.cotA+BD.cotC\)

\(\Rightarrow AC=BD.\left(cotA+cotC\right)\)

\(\Rightarrow BD=\dfrac{AC}{cotA+cotC}\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}BD.AC=\dfrac{1}{2}.\dfrac{AC^2}{cotA+cotC}=\dfrac{35^2}{2\left(cot70^0+cot50^0\right)}\approx509,1\left(cm^2\right)\)

NV
10 tháng 9 2021

Hình vẽ bài 1:

undefined

11 tháng 9 2021

B2

undefined

13 tháng 9 2021

\(1,\\ a,=\dfrac{\left(3+2\sqrt{3}\right)\sqrt{3}}{3}+\dfrac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{1}\\ =\dfrac{3\sqrt{3}+6}{3}+\sqrt{2}=\sqrt{3}+1+\sqrt{2}\\ b,=\left(\dfrac{\sqrt{5}+\sqrt{2}}{3}-\dfrac{\sqrt{5}-\sqrt{2}}{3}+1\right)\cdot\dfrac{1}{\left(\sqrt{2}+1\right)^2}\\ =\dfrac{\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}+3}{3}\cdot\dfrac{1}{\left(\sqrt{2}+1\right)^2}\\ =\dfrac{2\sqrt{2}+3}{3\left(3+2\sqrt{2}\right)}=\dfrac{1}{3}\)

\(2,\\ A=2x+\sqrt{\left(x-3\right)^2}=2x+\left|x-3\right|\\ =2\left(-5\right)+\left|-5-3\right|=-10+8=-2\\ B=\dfrac{\sqrt{\left(2x+1\right)^2}}{\left(x-4\right)\left(x+4\right)}\left(x-4\right)^2=\dfrac{\left|2x+1\right|\left(x-4\right)}{x+4}\\ B=\dfrac{17\cdot4}{12}=\dfrac{17}{3}\)

11 tháng 9 2021

1 My parents go shopping twice a week

2 Hoa's house has a balcony

3 My brother usually plays badminton with his friends

4 My favorite book is Tam and Cam. What is yours?

5 There are 10 pencil cases on the table

24 tháng 2 2022

1, My parents go shopping twice a week.

2, Hoa's house has a balcony.

3, My brother usually plays badminton with his friends.

4, My favorite book is Tam and Cam. What's yours?

5, There are ten pencil cases on the table.

2 tháng 8 2021

pytago=>\(BC=\sqrt{AB^2+AC^2}=10cm\)

\(=>\sin B=\dfrac{AC}{BC}=\dfrac{8}{10}=0,8=\cos C\)

\(=>\cos B=\dfrac{AB}{BC}=\dfrac{6}{10}=0,6=\sin C\)

\(=>\tan B=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}=\cot B\)

\(=>\cot B=\dfrac{AB}{AC}=\dfrac{3}{4}=\tan C\)

NV
2 tháng 8 2021

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

\(\Rightarrow sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

\(cosB=\dfrac{AB}{BC}=\dfrac{3}{5}\)

\(tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\)

\(cotB=\dfrac{AB}{AC}=\dfrac{3}{4}\)

Do tam giác ABC vuông tại A \(\Rightarrow C=90^0-B\)

\(\Rightarrow sinC=sin\left(90^0-B\right)=cosB=\dfrac{3}{5}\)

\(cosC=cos\left(90^0-B\right)=sinB=\dfrac{4}{5}\)

\(tanC=tan\left(90^0-B\right)=cotB=\dfrac{3}{4}\)

31 tháng 10 2021

đăng r hạn chế đăng lại b nhé, sẽ có ng trl mà

31 tháng 10 2021

Thank you