giải pt này hộ mik vs \(x\sqrt{x^2-x+1}+2\sqrt{3x+1}=x^2+x+3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{x+1}\left(x+4\right)=\left(x+18\right)\sqrt{6+x}-3x-40\)
\(pt\Leftrightarrow\sqrt{x+1}\left(x+4\right)-14=\left(x+18\right)\sqrt{6+x}-63-3x-9\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+4\right)^2-196}{\sqrt{x+1}\left(x+4\right)+14}=\frac{\left(x+18\right)^2\left(x+6\right)-3969}{\left(x+18\right)\sqrt{6+x}+63}-3\left(x-3\right)\)
\(\Leftrightarrow\frac{x^3+9x^2+24x-180}{\sqrt{x+1}\left(x+4\right)+14}-\frac{x^3+42x^2+540x-2025}{\left(x+18\right)\sqrt{6+x}+63}+3\left(x-3\right)=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+12x+60\right)}{\sqrt{x+1}\left(x+4\right)+14}-\frac{\left(x-3\right)\left(x^2+45x+675\right)}{\left(x+18\right)\sqrt{6+x}+63}+3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+12x+60}{\sqrt{x+1}\left(x+4\right)+14}-\frac{x^2+45x+675}{\left(x+18\right)\sqrt{6+x}+63}+3\right)=0\)
Pt trong ngoặc to to kia vô nghiệm
Suy ra x=3
b)\(3\left(\sqrt{x+9}-\sqrt{x+1}\right)=4-4x\)
\(pt\Leftrightarrow\sqrt{x+9}-\sqrt{x+1}=\frac{4-4x}{3}\)
\(\Leftrightarrow2x+10-2\sqrt{\left(x+1\right)\left(x+9\right)}=\frac{16x^2-32x+16}{9}\)
\(\Leftrightarrow-2\sqrt{\left(x+1\right)\left(x+9\right)}=\frac{16x^2-32x+16}{9}-\left(2x+10\right)\)
\(\Leftrightarrow4\left(x+1\right)\left(x+9\right)=\frac{256x^4-1600x^3+132x^2+7400x+5476}{81}\)
\(\Leftrightarrow\frac{-64\left(x^2-5x-5\right)\left(4x^2-5x-8\right)}{81}=0\)
mỗi lần bình phương tự rút ra điều kiện mà khử nghiệm nhé :v
Căn thức cuối cùng là \(\sqrt{1+x^2}\) hay \(\sqrt{1-x^2}\) vậy nhỉ?
\(\sqrt{1+x^2}\) thì bài này ko giải được
\(9,\Leftrightarrow x+1=8\Leftrightarrow x=7\\ 10,\Leftrightarrow3-2x=-8\Leftrightarrow-2x=-11\Leftrightarrow x=\dfrac{11}{2}\)
9. \(\sqrt[3]{x+1}=2\left(ĐK:x\ge-1\right)\)
<=> x + 1 = 23
<=> x + 1 = 8
<=> x = 7 (TM)
10. \(\sqrt[3]{3-2x}=-2\left(ĐK:x\le\dfrac{3}{2}\right)\)
<=> 3 - 2x = (-2)3
<=> 3 - 2x = -8
<=> -2x = -11
<=> \(x=\dfrac{11}{2}\left(loại\right)\)
Vậy nghiệm của PT là \(S=\varnothing\)
Vd1:
d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)
\(\Leftrightarrow x=6\)
\(ĐKXĐ:x\ge-\frac{1}{3}\)
\(x\sqrt{x^2-x+1}+2\sqrt{3x+1}=x^2+x+3\)
\(\left(x\sqrt{x^2-x+1}-1\right)+\left(2\sqrt{3x+1}-4\right)=x^2+x-2\)
\(\frac{x^2\left(x^2-x+1\right)-1}{x\sqrt{x^2-x+1}+1}+\frac{4\left(3x+1\right)-16}{2\sqrt{3x+1}+4}=\left(x-1\right)\left(x+2\right)\)
\(\frac{x^4-x^3+x^2-1}{x\sqrt{x^2-x+1}+1}+\frac{12x-12}{2\sqrt{3x+1}+4}-\left(x-1\right)\left(x+2\right)=0\)
\(\frac{\left(x-1\right)\left(x^3+x+1\right)}{x\sqrt{x^2-x+1}+1}+\frac{12\left(x-1\right)}{2\sqrt{3x+1}+4}-\left(x-1\right)\left(x+2\right)=0\)
\(\left(x-1\right)\left(\frac{x^3+x+1}{x\sqrt{x^2-x+1}+1}+\frac{12}{2\sqrt{3x+1}+4}-x-2\right)=0\)
\(\orbr{\begin{cases}x=1\left(TM\right)\\\frac{x^3+x+1}{x\sqrt{x^2-x+1}+1}+\frac{12}{2\sqrt{3x+1}+4}-x-2=0\end{cases}}\)
bạn cm \(\frac{x^3+x+1}{x\sqrt{x^2-x+1}+1}+\frac{12}{2\sqrt{3x+1}+4}-x-2\ne0\)
vậy pt có nghiệm duy nhất là x=1