Mn ơi mk đang cần gấp giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (x-4)(x+5)>0
=>x-4>0 hoặc x+5<0
=>x>4 hoặc x<-5
b: (2x+1)(x-3)<0
=>2x+1>0 và x-3<0
=>-1/2<x<3
c: (x-7)(3-x)<0
=>(x-7)(x-3)>0
=>x>7 hoặc x<3
d: x^2+6x-16<0
=>(x+8)(x-2)<0
=>-8<x<2
e: 3x^2+7x+4<0
=>3x^2+3x+4x+4<0
=>(x+1)(3x+4)<0
=>3x+4>0 và x+1<0
=>-4/3<x<-1
f: 5x^2-9x+4>0
=>(x-1)(5x-4)>0
=>x>1 hoặc x<4/5
g: x^2+6x-16<0
=>(x+8)(x-2)<0
=>-8<x<2
h: x^2+4x-21>0
=>(x+7)(x-3)>0
=>x>3 hoặc x<-7
i: x^2-9x-22<0
=>(x-11)(x+2)<0
=>-2<x<11
l: 16x^2+40x+25<0
=>(2x+5)^2<0(loại)
m: 3x^2-4x-4>=0
=>3x^2-6x+2x-4>=0
=>(x-2)(3x+2)>=0
=>x>=2 hoặc x<=-2/3
\(A=\dfrac{2a^2+4}{1-a^3}-\dfrac{1}{1+\sqrt{a}}-\dfrac{1}{1-\sqrt{a}}\\ =\dfrac{2a^2+4}{\left(1-a\right)\left(1+a+a^2\right)}-\dfrac{1}{1+\sqrt{a}}-\dfrac{1}{1-\sqrt{a}}\\ =\dfrac{2a^2+4-\left(1-\sqrt{a}\right)\left(1+a+a^2\right)-\left(1+\sqrt{a}\right)\left(1+a+a^2\right)}{\left(1-a\right)\left(1+a+a^2\right)}\\ =\dfrac{2a^2+4-\left(1+a+a^2\right)\left(1-\sqrt{a}+1+\sqrt{a}\right)}{\left(1-a\right)\left(1+a+a^2\right)}\\ =\dfrac{2a^2+4-2\left(1+a+a^2\right)}{\left(1-a\right)\left(1+a+a^2\right)}=\dfrac{2}{1+a+a^2}\\ \)
Ta có A max <=> \(1+a+a^2min\)
Mà 1+a+a^2=\(\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\\ \)
Dấu bằng xảy ra <=> a=-1/2
=> \(A=\dfrac{2}{1+a+a^2}\le\dfrac{2}{\dfrac{3}{4}}=\dfrac{8}{3}\)
Vậy max A=8/3 <=> a=-1/2
=)) mỏi tay quá đê
Hì thanks bạn nhiều nhé