K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2017

bạn tự vẽ hình nhé, mình chỉ giải được a,b thôi

a. tam giác ABC cân=> góc B= góc C

mà DM//AB => góc DMC= góc B(đồng vị)

=> góc DMC= góc C =>tam giác DMC cân

b. ME//AC

MD//AB

=> ADME là hình bình hành=> AE= DM

mà DM=DC (tam giác DMC cân)=> AE= DC

16 tháng 10 2017

Cảm ơn bạn

22 tháng 11 2017

Chứng minh được ADME là hình bình hành Þ I là trung điểm của AM. Tương tự 2A. I thuộc đường trung bình của D ABC (đường thẳng đi qua trung điểm của AB và AC)

23 tháng 8 2023

chịu

23 tháng 8 2023

đọc mà rối loạn tâm chí, chi co cao thủ như các thầy cô giáo mới làm đc

 

30 tháng 9 2016

gấp lắm rồi các bạn làm hộ mjnh nha

30 tháng 9 2016

đợi tí nha

19 tháng 12 2016

Theo đề đúng thì lm như sau:

a) Có: DE // BF (gt)

EF // BD (gt)

Suy ra BD = EF (theo tính chất đoạn chắn) (đpcm)

b) Vì EF // AB (gt) => ADE = DEF (so le trong) (1)

ED // BC (gt) => DEF = EFC (so le trong) (2)

Từ (1) và (2) => ADE = EFC

Xét t/g ADE và t/g EFC có:

EAD = CEF ( đồng vị)

AD = EF ( cùng = BD)

ADE = EFC (cmt)

Do đó, t/g ADE = t/g EFC (g.c.g) (đpcm)

c) Xét t/g MFE và t/g MDB có:

MF = MD (gt)

MFE = MDB (so le trong)

FE = DB (câu a)

Do đó, t/g MFE = t/g MDB (c.g.c)

=> EMF = BMD (2 góc tương ứng)

Mà EMF + EMD = 180o

Nên BMD + EMD = 180o

=> BME = 180o

hay B,M,E thẳng hàng (đpcm)

 

19 tháng 12 2016

Đề sai rồi Trang ơi, xem lại đi

a) Xét ΔAMB và ΔAMC có 

AB=AC(ΔABC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

b) Xét ΔABC có

M là trung điểm của BC(gt)

ME//AB(gt)

Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

9 tháng 2 2021

bạn giúp mk với ạ!!

27 tháng 3 2020

zì \(\hept{\begin{cases}MD//AE\\ME//AD\end{cases}}\)

=> tứ giác ADME là hbh

=>\(\hept{\begin{cases}AD=ME\\AE=MD\end{cases}}\)

=>\(\frac{AD}{AB}=\frac{ME}{AB}\)

mà ME//AB

=>\(\frac{ME}{AB}=\frac{CE}{AC}=>\frac{AD}{AB}=\frac{CE}{AC}\)

=>\(\frac{AD}{AB}+\frac{AE}{AC}=\frac{CE}{AC}+\frac{AE}{AC}=\frac{CE+AE}{AC}=\frac{AC}{AC}=1\left(dpcm\right)\)

a: Xét ΔAMB và ΔAMC có

MA chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: góc ADE=góc ABC

góc AED=góc ACB

góc ABC=góc ACB

=>góc ADE=góc AED

=>ΔAED cân tại A

c: Xet ΔAKC co ME//KC

nên ME/KC=AE/AC=AM/AK

=>AD/AB=AM/AK

=>DM//BK