1.Cho các số dương x và y tm: \(\dfrac{x^2+1}{y^2}=1\)
Tìm Min A=\(\dfrac{x}{y}+\dfrac{y}{x}\)
2. Cho a,b,c>0 . CM: \(\dfrac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}+\dfrac{c}{c+\sqrt{\left(a+c\right)\left(c+b\right)}}\le1\)
Giúp mk vs mình đag cần gấp lắm vì ko có chủ đề là Bđt nên mk ms đặt là căn bậc 2 nhak
Dễ chứng minh được:
\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ac}+\sqrt{ab}\)
Do đó, ta có:
\(\sum\limits_{cyc}=\dfrac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\sum_{cyc}\dfrac{a}{a+\sqrt{ac}+\sqrt{ab}}=\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
Vậy: BĐT đã được chứng minh. Đẳng thức xảy ra khi và chỉ khi a=b=c