K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2014

toán hình phải vẽ mới giải được, lâu lắm

 

a) Xét ΔADC vuông tại D có 

\(\sin\widehat{DAC}=\dfrac{DC}{AC}\)

\(\Leftrightarrow\dfrac{DC}{AC}=\dfrac{4}{5}\)

nên \(DC=\dfrac{4}{5}AC\)

Áp dụng định lí Pytago vào ΔACD vuông tại D, ta được:

\(AC^2=AD^2+CD^2\)

\(\Leftrightarrow AC^2=42^2+\left(\dfrac{4}{5}AC\right)^2\)

\(\Leftrightarrow\dfrac{9}{25}AC^2=1764\)

\(\Leftrightarrow AC^2=4900\)

hay AC=70(cm)

Ta có: \(DC=\dfrac{4}{5}AC\)(cmt)

nên \(DC=\dfrac{4}{5}\cdot70=56\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại D có DF là đường cao ứng với cạnh huyền AC, ta được:

\(DF\cdot AC=AD\cdot DC\)

\(\Leftrightarrow DF\cdot70=42\cdot56=2352\)

hay DF=33,6(cm)

Ta có: ABCD là hình chữ nhật(gt)

mà O là giao điểm của hai đường chéo AC và BD(gt)

nên \(DO=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(DO=\dfrac{70}{2}=35\left(cm\right)\)

Xét ΔDFO vuông tại F có 

\(\sin\widehat{DOF}=\dfrac{DF}{DO}=\dfrac{33.6}{35}=\dfrac{24}{25}\)

hay \(\sin\widehat{AOD}=\dfrac{24}{25}\)

b) Xét ΔDFO vuông tại F và ΔCEO vuông tại E có

OD=OC(cmt)

\(\widehat{FOD}=\widehat{EOC}\)(hai góc đối đỉnh)

Do đó: ΔDFO=ΔCEO(Cạnh huyền-góc nhọn)

Suy ra: OF=OE(hai cạnh tương ứng)

Xét ΔOAB có 

\(\dfrac{OF}{OA}=\dfrac{OE}{OB}\left(OF=OE;OA=OB\right)\)

nên FE//AB(Định lí Ta lét đảo)

mà AB//DC(gt)

nên FE//DC

Ta có: OE+OD=ED(O nằm giữa E và D)

OF+OC=FC(O nằm giữa F và C)

mà OE=OF(cmt)

và OD=OC(cmt)

nên ED=FC

Xét tứ giác CEFD có FE//CD(cmt)

nên CEFD là hình thang có hai đáy là FE và CD(Định nghĩa hình thang)

Hình thang CEFD(FE//CD) có ED=FC(cmt)

nên CEFD là hình thang cân(Dấu hiệu nhận biết hình thang cân)

b) Xét ΔDFO vuông tại F và ΔCEO vuông tại E có

OD=OC(cmt)

\(\widehat{FOD}=\widehat{EOC}\)(hai góc đối đỉnh)

Do đó: ΔDFO=ΔCEO(Cạnh huyền-góc nhọn)

Suy ra: OF=OE(hai cạnh tương ứng)

Xét ΔOAB có 

\(\dfrac{OF}{OA}=\dfrac{OE}{OB}\left(OF=OE;OA=OB\right)\)

nên FE//AB(Định lí Ta lét đảo)

mà AB//DC(gt)

nên FE//DC

Ta có: OE+OD=ED(O nằm giữa E và D)

OF+OC=FC(O nằm giữa F và C)

mà OE=OF(cmt)

và OD=OC(cmt)

nên ED=FC

Xét tứ giác CEFD có FE//CD(cmt)

nên CEFD là hình thang có hai đáy là FE và CD(Định nghĩa hình thang)

Hình thang CEFD(FE//CD) có ED=FC(cmt)

nên CEFD là hình thang cân(Dấu hiệu nhận biết hình thang cân)

11 tháng 10 2021

a: Xét ΔAID vuông tại I và ΔCKB vuông tại K có 

AD=CB

\(\widehat{D}=\widehat{B}\)

Do đó: ΔAID=ΔCKB

Suy ra: AI=CK

Xét tứ giác AICK có 

AI//CK

AI=CK

Do đó: AICK là hình bình hành

mà \(\widehat{AIC}=90^0\)

nên AICK là hình chữ nhật

a: Xét ΔAED vuông tại E và ΔBFC vuông tại F có 

AD=BC

\(\widehat{D}=\widehat{C}\)

Do đó: ΔAED=ΔBFC
Suy ra: DE=FC

4 tháng 11 2021

còn câu b nữa bạn ơi

a: Xét ΔABH vuông tại H và ΔDBA vuông tại A có 

góc ABH chung

Do đó:ΔABH\(\sim\)ΔDBA

b: Xét ΔABC vuông tại B có BK là đường cao

nên \(AB^2=AK\cdot AC\)