K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

\(n^3+3n^2+2n=n^3+n^2+2n^2+2n=n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n\right)=n\left(n+1\right)\left(n+2\right)\) (1)

\(A=\dfrac{n}{3}+\dfrac{n^2}{2}+\dfrac{n^3}{6}=\dfrac{2n}{6}+\dfrac{3n^2}{6}+\dfrac{n^3}{6}\)

Từ (1) \(\Rightarrow A=\dfrac{n\left(n+1\right)\left(n+2\right)}{6}\)

- mà trong ba số nguyên liên tiếp thì tích của chúng chia hết cho 2 và 3

- mặt khác: (2,3) = 6

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)

tức là \(A=\dfrac{n\left(n+1\right)\left(n+2\right)}{6}\) là số nguyên (đpcm)

15 tháng 7 2018

Q=3n3+6n-2n3+2n2-2n2-7n

=n3-n

=n(n2-1)

=(n-1)n(n+1)

Vì n là số nguyên=>n-1;n;n+1 là 3 số nguyên liên tiếp

                            =>Q chia hết cho 6(đpcm)

4 tháng 10 2019

2. Ta có: P = 2x2 + y2 - 4x - 4y + 10

P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4

P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)\(\forall\)x;y

=> P luôn dương với mọi biến x;y

3 Ta có:

(2n + 1)(n2 - 3n - 1) - 2n3 + 1

= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1

= -5n2 - 5n = -5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

20 tháng 4 2020

1×2=2

a: \(M=m^2\left(m+n\right)-n^2m-n^3\)

\(=m^2\left(m+n\right)-n^2\left(m+n\right)\)

\(=\left(m+n\right)^2\left(m-n\right)\)

\(=\left(-2017+2017\right)^2\cdot\left(-2017-2017\right)\)

=0

b: \(N=n^3-3n^2-n\left(3-n\right)\)

\(=n^2\left(n-3\right)+n\left(n-3\right)\)

\(=n\left(n-3\right)\left(n+1\right)\)

\(=13\cdot10\cdot14=1820\)

8 tháng 6 2017

Bài 2 chia đa thức cho đa thức ta được số dư là 6-a(7-2a)

 để đa thức 2x+ 7x + 6 chia hết cho x+a thì 6-a(7-2a)=0

=>6-7a+2a2=0

<=>2a2-4a-3a+6=0

<=>2a(a-2)-3(a-2)=0

<=>(a-2)(2a-3)=0

=> a=2 hoặc a=3/2

Vậy vớia=2 hoặc a=3/2 thì đa thức 2x+ 7x + 6 chia hết cho x+a

8 tháng 6 2017

bài 1

n lẻ nên đặt n=2k+1 (k thuộc Z)

Ta có n3-3n2-n+3=n2(n-3)-(n-3)

=(n-3)(n-1)(n+1)

=(2k+1-3)(2k+1-1)(2k+1+1)

=2k(2k+2)(2k-2)

=8.(k-1).k.(k+1)

Vì (k-1).k.(k+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3 mà (2;3)=1 nên chia hết cho 6 

Ta có 48=6.8 nên 8.k(k+1)(k-1) chia hết cho 48 hay n3-3n2-n+3chia hết cho 48

25 tháng 9 2017

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

3 tháng 10 2019

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

26 tháng 9 2023

Gọi d là ước chung lớn nhất của 2 số. Nhiệm vụ của ta là chứng minh d=1.

a) 2n+3, n+2 \(⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

b) n+1, 3n+4

\(\Rightarrow\left(3n+4\right)-3\left(n+1\right)⋮d\)

\(\Rightarrow1⋮d\)

c) 2n+3, 3n+4

\(\Rightarrow3\left(2n+3\right)-2\left(3n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

26 tháng 9 2023

𝓪, 𝓖𝓸̣𝓲 𝓤̛𝓒𝓛𝓝\(\left(2n+3,n+2\right)=d\)

\(\Rightarrow2n+3⋮d\)  

\(\Rightarrow n+2⋮d\Rightarrow2.\left(n+2\right)⋮d\Rightarrow2n+4⋮d\)

\(\Rightarrow2n+4-2n+3⋮d\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\)𝓤̛𝓒𝓛𝓝\(\left(2n+3,n +2\right)=1\)

𝓥𝓪̣̂𝔂 \(2n+3,n+2\) 𝓵𝓪̀ 𝓱𝓪𝓲 𝓼𝓸̂́ 𝓷𝓰𝓾𝔂𝓮̂𝓷 𝓽𝓸̂́ 𝓬𝓾̀𝓷𝓰 𝓷𝓱𝓪𝓾

 

11 tháng 3 2017