Chứng minh đa thức sau không phụ thuộc vào biến x
(x2+x+1)2 - (x2+1)2 -x(2x2+x+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(x+2)(x^2-2x+4)-x^2 .(x-2) -2x^2`
`=x^3+2^3-(x^3-2x^2)-2x^2`
`=x^3+8-x^3+2x^2-2x^2`
`=8`
\(\left(x+2\right)\left(x^2-2x+4\right)-x^2\left(x-2\right)-2x^2\)
\(=x^3+8-x^3+2x^2-2x^2\)
=8
Bài 1:
a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)
\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)
\(=10x^2+10x^2\)
\(=20x^2\)
b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)
\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)
\(=-4x^4+9x^3+4x^2-44x\)
`# \text {04th5}`
`a.`
`P = (5x^2 - 2xy + y^2) - (x^2 + y^2) - (4x^2 - 5xy + 1)`
`= 5x^2 - 2xy + y^2 - x^2 - y^2 - 4x^2 + 5xy - 1`
`= (5x^2 - x^2 - 4x^2) + (-2xy + 5xy) + (y^2 - y^2) - 1`
`= 3xy - 1`
`b.`
\((x^2-5x+4)(2x+3)-(2x^2-x-10)(x-3)\)
`= x^2(2x + 3) - 5x(2x + 3) + 4(2x + 3) - [ 2x^2(x - 3) - x(x - 3) - 10(x - 3)]`
`= 2x^3 + 3x^2 - 10x^2 - 15x + 8x + 12 - (2x^3 - 6x^2 - x^2 + 3x - 19x + 30)`
`= 2x^3 -7x^2 - 7x + 12 - (2x^3 - 7x^2 - 7x + 30)`
`= 2x^3 - 7x^2 - 7x + 12 - 2x^3 + 7x^2 + 7x -30`
`= -30`
Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.
Thực hiện khai triển hằng đẳng thức
A = ( x 3 – 1) + ( x 3 – 6 x 2 + 12x – 8) – 2( x 3 + 1) + 6( x 2 – 2x + 1).
Rút gọn A = -5 không phụ thuộc biến x.
a) x(2x+1)-x2(x+2)+(x3-x+3)= 2x2+x-x3-2x2+x3-x+3= 3
b)x (3x2-x+5)-(2x3+3x-16)-x(x2-x+2)= 3x3-x2+5x-2x3-3x+16-x3+x2-2x= 16
a)\(M=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)=6x^2+23x-55-6x^2-23x-21=-76\)
b) \(N=\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1=9\)
câu 2 :
b, chứng minh giá trị sau không phụ thuộc vào biến x :
A=(x+1)(x2 - x +1) - (x-1)(x2 + x + 1)
\(A=\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^3+1\right)-\left(x^3-1\right)\)
\(=x^3+1-x^3+1=2\)
Lời giải:
a.
$A=(x+6)^2-(x+2)^2+2[(x-5)^2-(x-3)^2]$
$=(x+6-x-2)(x+6+x+2)+2[(x-5-x+3)(x-5+x-3)]$
$=4(2x+8)+2(-2)(2x-8)$
$=4(2x+8)-4(2x-8)=4[(2x+8)-(2x-8)]=4.16=64$ không phụ thuộc vào $x$
b.
$B=(x^3-2^3)-(x^3+2^3)=-16$ không phụ thuộc vào $x$
c.
$C=x^4+2x^2-[(x^2+3)^2-(2x)^2]$
$=x^4+2x^2-(x^4+6x^2-4x^2)$
$=x^4+2x^2-(x^4+2x^2)=0$ không phụ thuộc vào $x$
a) Ta có: \(A=\left(x+6\right)^2+2\left(x-5\right)^2-\left(x+2\right)^2-2\left(x-3\right)^2\)
\(=x^2+12x+36+2\left(x^2-10x+25\right)-\left(x^2+4x+4\right)-2\left(x^2-6x+9\right)\)
\(=x^2+12x+36+2x^2-20x+50-x^2-4x-4-2x^2+12x-18\)
\(=34\)
b) Ta có: \(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=x^3-8-x^3-8\)
=-16
c) Ta có: \(C=x^4+2x^2-\left(x^2-2x+3\right)\left(x^2+2x+3\right)\)
\(=x^4+2x^2-\left[\left(x^2+3\right)^2-4x^2\right]\)
\(=x^4+2x^2-\left(x^4+6x^2+9\right)+4x^2\)
\(=-9\)
a) Rút gọn P = 3 Þ giá trị của biểu thức P không phụ thuộc vào giá trị của m.
b) Rút gọn Q = 9 Þ giá trị của biểu thức Q không phụ thuộc vào giá trị của m.
a)P=x(2x+1)-x2(x+2)+x3-x+3
P=2x2+x-x3-2x2+x3-x+3
P=(2x2-2x2)+(x-x)+(-x3+x3)+3
P= 0 + 0 + 0 +3
P=3
Vậy giá trị của của biểu thức đã cho không phụ thuộc vào giá trị của biến x
\(a)\)
\(P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)
\(\Leftrightarrow P=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x\)
\(\Leftrightarrow P=0\)
Vậy P không phụ thuộc vào giá trị của biến
\(b)\)
\(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(\Leftrightarrow Q=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\)
\(\Leftrightarrow Q=-8\)
Vậy Q không phụ thuộc vào giá trị của biến
\(=\left[\left(x^2+1\right)+x\right]^2-\left(x^2+1\right)^2-x\left(2x^2+x+2\right)\)
\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2-\left(x^2+1\right)^2-x\left(2x^2+x+2\right)\)
\(=2x\left(x^2+1\right)+x^2-x\left(2x^2+x+2\right)\)
\(=2x^3+2x+x^2-2x^2-x^2-2x=0\)