A=1.4+4.7+7.10+...+97.100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.101107`
1.
a)
`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`
`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`
`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`
`= 1/3* (1 - 1/103)`
`= 1/3*102/103`
`= 34/103`
b)
`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`
`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`
`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`
`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`
`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`
`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`
`= -1/2 * (1 - 1/101)`
`= -1/2*100/101`
`= -50/101`
2.
`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`
`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`
`= 1-1/100`
`= 99/100`
=2/3(3/1*4+3/4*7+...+3/97*100)
=2/3(1-1/4+1/4-1/7+...+1/97-1/100)
=2/3*99/100
=198/300
=66/100
=33/50
Đặt A=1.4+4.7+7.10+...+97.100
9A=1.4.9+4.7.9+7.10.9+...+97.100.9
=1.4(7+2)+4.7(10-1)+7.10(13-4)+...+97.100(103-94)
=8+97.100.103
=999108
\(\Rightarrow\)A=999108:9
\(\Rightarrow\)A=111012
Học tốt nha!!!
## Bước 1: Phân tích dãy số
Dãy số trên có dạng: 1.4 + 4.7 + 7.10 + ... + 97.100
Ta nhận thấy mỗi số hạng trong dãy đều là tích của hai số, số thứ nhất tăng dần theo quy luật cộng 3 (1, 4, 7, ...), số thứ hai tăng dần theo quy luật cộng 3 (4, 7, 10, ...).
## Bước 2: Biểu diễn tổng dưới dạng công thức
Gọi tổng của dãy số là S. Ta có thể viết lại S dưới dạng công thức:
S = 1.4 + 4.7 + 7.10 + ... + 97.100
S = (1 x 4) + (4 x 7) + (7 x 10) + ... + (97 x 100)
## Bước 3: Tính tổng
Để tính tổng S, ta có thể sử dụng phương pháp sau:
* **Nhân cả hai vế của S với 3:**
3S = 3(1 x 4) + 3(4 x 7) + 3(7 x 10) + ... + 3(97 x 100)
3S = (1 x 4 x 3) + (4 x 7 x 3) + (7 x 10 x 3) + ... + (97 x 100 x 3)
3S = (1 x 4 x (7 - 1)) + (4 x 7 x (10 - 4)) + (7 x 10 x (13 - 7)) + ... + (97 x 100 x (103 - 97))
3S = (1 x 4 x 7 - 1 x 4 x 1) + (4 x 7 x 10 - 4 x 7 x 4) + (7 x 10 x 13 - 7 x 10 x 7) + ... + (97 x 100 x 103 - 97 x 100 x 97)
* **Rút gọn:**
3S = (1 x 4 x 7) + (4 x 7 x 10) + (7 x 10 x 13) + ... + (97 x 100 x 103) - (1 x 4 x 1) - (4 x 7 x 4) - (7 x 10 x 7) - ... - (97 x 100 x 97)
* **Nhận thấy:**
Các số hạng trong ngoặc thứ nhất và thứ hai đều triệt tiêu lẫn nhau, chỉ còn lại:
3S = 97 x 100 x 103 - 1 x 4 x 1
3S = 1000900 - 4
3S = 1000896
* **Tính S:**
S = 1000896 / 3
S = 333632
## Kết luận:
Tổng của dãy số 1.4 + 4.7 + 7.10 + ... + 97.100 là 333632.
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
\(A=\frac{2}{3}.\left(1-\frac{1}{4}\right)+\frac{2}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{2}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+...+\frac{2}{3}.\left(\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\frac{99}{100}\)
\(A=\frac{33}{50}\)
Ta có: \(A=\frac{2}{1.4}+\frac{2}{4.7}+...+\frac{2}{97.100}\)
\(=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)
Nhận xét: \(\frac{a}{x.\left(x+a\right)}=\frac{1}{x}-\frac{1}{x+a}\)
Do đó: \(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\left(\frac{100}{100}-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\frac{99}{100}\)
\(=\frac{33}{50}\)
Vậy,\(A=\frac{33}{50}\)
\(\text{Ta có: }A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+....+\frac{2}{97.100}\)
\(\Rightarrow\frac{3}{2}A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\)
\(\Rightarrow\frac{3}{2}A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow\frac{3}{2}A=1-\frac{1}{100}\)
\(\Rightarrow\frac{3}{2}A=\frac{99}{100}\)
\(\Rightarrow A=\frac{99}{100}:\frac{3}{2}\)
\(A=\frac{99}{100}.\frac{2}{3}=\frac{33}{50}\)
Chào bạn, bạn hãy theo dõi bài giải của mình nhé!
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)
Chúc bạn học tốt!
\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
\(=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
\(A=1.4+4.7+7.10+....+97.100\)
\(2A=2.8+8.14+14.20+...+194.200\)
\(2A=2\left(1.4+4.7+7.10+...+97.100\right)\)
\(2A-A=2\left(1.4+4.7+...+97.100\right)-\left(1.4+4.7+...+97.100\right)\)
\(\Rightarrow A=2\)
Vậy.....
mk ko biết làm nhưng sai rồi bạn ơi