K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(2^2\right)^{10n}+1+19\)

\(=4^{10n}+20\)

Ta có: \(4^{10n}⋮2\forall n\in N\)*

\(20⋮2\)

\(\Rightarrow4^{10n}+20⋮2\forall n\in N\)*

\(\Rightarrow\left(2^2\right)^{10n}+1+19⋮2\forall n\in N\)*

\(\Rightarrow\left(2^2\right)^{10n}+1+19\) là hợp số (đpcm)

10 tháng 10 2017

Ta có: \(\left(2^2\right)^{10n}+1+19\)

\(=4^{10n}+20\)

Ta có: \(4^{10n}⋮2\forall n\in N\)*

\(=20⋮2\)

\(\Rightarrow4^{10n}+20⋮2\forall n\in N\)*

\(\Rightarrow\left(2^2\right)^{10n}+1+19⋮2\forall n\in N\)*

\(\Rightarrow\left(2^2\right)^{10n}+1+19\) là hợp số ( đpcm )

Chúc bạn học tốt!

10 tháng 7 2015

p là số nguyên tố > 3 nên p chia 3 dư 1 hoặc dư 2

+Nếu p chia 3 dư 1 => \(p^2\)chia 3 dư 1\(\Rightarrow2011p^2\)chia 3 dư 1\(\Rightarrow2011p^2+2\) chia hết cho 3.
Mà 3n chia hết cho 3
=> a chia hết cho 3 => a là hợp số (do a > 3)

+Nếu p chia 3 dư 2 => p2 chia 3 dư 1 => 2011p2 chia 3 dư 1 => 2011p2 + 2 chia hết cho 3
Mà 3n chia hết cho 3
=> A chia hết cho 3 => A là hợp số (do a > 3)

\(\text{Vậy a là hợp số.}\)

27 tháng 3 2016

lớn hơn 3 vẫn có số chia hết cho 3

26 tháng 3 2016

câu này các bạn ko cần trả lời đâu

A =n^4 + 4 ^n >5 khi n>1

n^4 thì sẽ có tận cùng là 1 nếu n lẻ và có tận cùng là 6 nếu n chẵn ( n chẵn thì A là hợp số )và 

4^n thì sẽ có tận cùng là 4 khi n lẻ và 6 khi n chẵn

Nếu n chẵn thì A là hợp số

Nếu n lẻ thì A có tận cùng là 5 => A chia hết cho 5 và A >5 nên A là hợp số 

Vậy A là hợp số (n>1)

10 tháng 8 2017

n^4 + 4=n^4+4n^2+4-4n^2

= (n^2+2)^2-4n^2

=(n^2+2-2n)(n^2+2+2n)

=((n-1)^2+1)(n^2+2+2n)

chung minh cac thua so >1 la se suy ra n^4+4 la hop so

31 tháng 7 2017

a,\(n^4+4=n^4+4n^2+4-4n^2\) (\(n\in N\))

\(=\left(n^2+2\right)^2-\left(2n\right)^2\)

\(=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\) (1)

Với \(\forall n\in N\) thì từ (1) \(n^4+4\) có nhiều hơn 2 ước nên là hợp số

b, \(n^4+4k^4=(n^2)^2+\left(2k^2\right)^2\)

\(=\left(n^2\right)^2+4n^2k^2+\left(2k^2\right)^2-4n^2k^2\)

=\(\left(n^2+2k^2\right)^2-\left(2nk\right)^2\)

=\(\left(n^2-2nk+2k^2\right)\left(n^2+2nk+2k^2\right)\)

Phân tích như câu a suy ra đpcm

\(\)

21 tháng 7 2016

a, ta có 2 trường hợp:

+) n chẵn =>n+10 = chẵn + chẵn = chẵn chia hết cho 2

+) n lẻ => n + 15 = lẻ + lẻ = chẵn chia hết cho 2

vậy (n+10)(n+15) chia hết cho 2(đpcm)

21 tháng 5 2019

Ta có A = 1 + 2 +3 + ... + n

             = n(n+1) : 2

lại có n(n+1) là tích chẵn

=> n(n+1) \(⋮\)2

=> a \(⋮\)2

=> a chẵn 

mặt khác, 2n + 1 \(⋮̸\)2

=> 2n + 1 là số lẻ

=> b lẻ

Ngoài ra ta nhận thấy ƯCLN của 1 số lẻ và 1 số chẵn = 1

=> chúng là 2 số nguyên tố cùng nhau

tương tự như vậy a và b là 2 số nguyên tố cùng nhau (đpcm)