cho n thuoc n* chung minh 2^2^10n+1+19 la hop so
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p là số nguyên tố > 3 nên p chia 3 dư 1 hoặc dư 2
+Nếu p chia 3 dư 1 => \(p^2\)chia 3 dư 1\(\Rightarrow2011p^2\)chia 3 dư 1\(\Rightarrow2011p^2+2\) chia hết cho 3.
Mà 3n chia hết cho 3
=> a chia hết cho 3 => a là hợp số (do a > 3)
+Nếu p chia 3 dư 2 => p2 chia 3 dư 1 => 2011p2 chia 3 dư 1 => 2011p2 + 2 chia hết cho 3
Mà 3n chia hết cho 3
=> A chia hết cho 3 => A là hợp số (do a > 3)
\(\text{Vậy a là hợp số.}\)
A =n^4 + 4 ^n >5 khi n>1
n^4 thì sẽ có tận cùng là 1 nếu n lẻ và có tận cùng là 6 nếu n chẵn ( n chẵn thì A là hợp số )và
4^n thì sẽ có tận cùng là 4 khi n lẻ và 6 khi n chẵn
Nếu n chẵn thì A là hợp số
Nếu n lẻ thì A có tận cùng là 5 => A chia hết cho 5 và A >5 nên A là hợp số
Vậy A là hợp số (n>1)
n^4 + 4=n^4+4n^2+4-4n^2
= (n^2+2)^2-4n^2
=(n^2+2-2n)(n^2+2+2n)
=((n-1)^2+1)(n^2+2+2n)
chung minh cac thua so >1 la se suy ra n^4+4 la hop so
a,\(n^4+4=n^4+4n^2+4-4n^2\) (\(n\in N\))
\(=\left(n^2+2\right)^2-\left(2n\right)^2\)
\(=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\) (1)
Với \(\forall n\in N\) thì từ (1) \(n^4+4\) có nhiều hơn 2 ước nên là hợp số
b, \(n^4+4k^4=(n^2)^2+\left(2k^2\right)^2\)
\(=\left(n^2\right)^2+4n^2k^2+\left(2k^2\right)^2-4n^2k^2\)
=\(\left(n^2+2k^2\right)^2-\left(2nk\right)^2\)
=\(\left(n^2-2nk+2k^2\right)\left(n^2+2nk+2k^2\right)\)
Phân tích như câu a suy ra đpcm
\(\)
a, ta có 2 trường hợp:
+) n chẵn =>n+10 = chẵn + chẵn = chẵn chia hết cho 2
+) n lẻ => n + 15 = lẻ + lẻ = chẵn chia hết cho 2
vậy (n+10)(n+15) chia hết cho 2(đpcm)
Ta có A = 1 + 2 +3 + ... + n
= n(n+1) : 2
lại có n(n+1) là tích chẵn
=> n(n+1) \(⋮\)2
=> a \(⋮\)2
=> a chẵn
mặt khác, 2n + 1 \(⋮̸\)2
=> 2n + 1 là số lẻ
=> b lẻ
Ngoài ra ta nhận thấy ƯCLN của 1 số lẻ và 1 số chẵn = 1
=> chúng là 2 số nguyên tố cùng nhau
tương tự như vậy a và b là 2 số nguyên tố cùng nhau (đpcm)
Ta có: \(\left(2^2\right)^{10n}+1+19\)
\(=4^{10n}+20\)
Ta có: \(4^{10n}⋮2\forall n\in N\)*
\(20⋮2\)
\(\Rightarrow4^{10n}+20⋮2\forall n\in N\)*
\(\Rightarrow\left(2^2\right)^{10n}+1+19⋮2\forall n\in N\)*
\(\Rightarrow\left(2^2\right)^{10n}+1+19\) là hợp số (đpcm)
Ta có: \(\left(2^2\right)^{10n}+1+19\)
\(=4^{10n}+20\)
Ta có: \(4^{10n}⋮2\forall n\in N\)*
\(=20⋮2\)
\(\Rightarrow4^{10n}+20⋮2\forall n\in N\)*
\(\Rightarrow\left(2^2\right)^{10n}+1+19⋮2\forall n\in N\)*
\(\Rightarrow\left(2^2\right)^{10n}+1+19\) là hợp số ( đpcm )
Chúc bạn học tốt!