giải phương trình vô tỉ sau
\(\sqrt{\sqrt{2}-1-x}+\sqrt[4]{x}=\dfrac{1}{\sqrt[4]{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
toán lớp 9 thì ai mà biết chỉ lớp 5 thôi
đáp án là : 0 bít !
\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
ĐKXĐ: x lớn hơn hoặc bằng -1 và x nhỏ hơn hoặc bằng 1.
\(4+2\sqrt{1-x}=-3x+5\sqrt{x+1}+\sqrt{1-x^2}\)
\(\Leftrightarrow4+2\left(\sqrt{1-x}-1\right)+2=-3x+5\left(\sqrt{x+1}-1\right)+\left(\sqrt{1-x^2}-1\right)+5+1\)
\(\frac{-2x}{\sqrt{1-x}+1}=-3x+\frac{5x}{\sqrt{x+1}+1}-\frac{x^2}{\sqrt{1-x^2}+1}\Leftrightarrow x\left(\frac{x}{\sqrt{1-x^2}+1}-\frac{5}{\sqrt{x+1}+1}-\frac{2}{\sqrt{1-x}+1}+3\right)=0\)
\(\Leftrightarrow x=0.\)
\(Pt\Leftrightarrow3\left(x+1\right)+2\sqrt{1-x}+1=5\sqrt{x+1}+\sqrt{1-x^2}\)
đặt \(\sqrt{x+1}=a,\sqrt{1-x}=b\)
\(\Leftrightarrow3a^2+2b+1=a\left(5+b\right)\)
\(\Leftrightarrow3a^2-\left(5+b\right)a+2b+1=0\)
\(\Delta=b^2-4ac=\left(-b-5\right)^2-4.3.\left(2b+1\right)\)
\(=b^2+10b+25-24b-12\)
\(=b^2-14b+13\)
\(TH1:\Rightarrow a=\frac{5+b+\sqrt{b^2-14b+13}}{6}\)
\(\Rightarrow6a-5-b=\sqrt{b^2-14b+13}\)
\(\Rightarrow6\sqrt{1+x}-5-\sqrt{1-x}=\sqrt{1-x-14\sqrt{1-x}+13}\)
\(\hept{\begin{cases}x=0\left(nhan\right)\\x=......\left(loai\right)\end{cases}}\)
TH2:\(a=\frac{5+b-\sqrt{b^2-14b+13}}{6}\)
\(.............................................\)
cách này hơi dài.
Đặt \(a=\sqrt{2-x^2};b=\sqrt{2-\frac{1}{x^2}};c=x+\frac{1}{x}\)
xet x<0 vt < 2 căn 2<3, vt >4=>loại=>x>0=>c>=2;
ta có a+b=4-c;
a^2+b^2=4-x^2-1/x^2=6-c^2;
\(=>\hept{\begin{cases}2a+2b=8-2c\left(2\right)\\a^2+b^2=6-c^2\left(1\right)\end{cases}}\)
trừ 1 cho 2=>a^2-2a+b^2-2b=-c^2-2-2c=>a^2-2b+1+b^2-2b+1=-c^2+2c-1+1
=>\(\left(a-1\right)^2+\left(b-1\right)^2=-\left(c-1\right)^2+1\)
\(< =>\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=1\)
ta lại có (a-1)^2>=0;(b-1)^2>=0;(c-1)^2>=(2-1)^2=1=>Vế trái>=1=Vế phải, dấu bằng xảy ra<=>
\(\hept{\begin{cases}a=1\\b=1\\c=2\end{cases}< =>x=1}\)
Bạn tham khảo nhé:Điều kiện bạn tự tìm nhé
pt\(\Leftrightarrow\sqrt{2-x^2}+x-2+\sqrt{2-\frac{1}{x^2}}+\frac{1}{x}-2=0\)
\(\Leftrightarrow\frac{2-x^2-\left(x-2\right)^2}{\sqrt{2-x^2}-x+2}+\frac{2-\frac{1}{x^2}-\left(\frac{1}{x}-2\right)^2}{\sqrt{2-\frac{1}{x^2}}-\frac{1}{x}+2}=0\)
\(\Leftrightarrow\frac{-2\left(x^2-2x+1\right)}{\sqrt{2-x^2}-x+2}+\frac{-2\left(\frac{1}{x^2}-\frac{2}{x}+1\right)}{\sqrt{2-\frac{1}{x^2}}-\frac{1}{x}+2}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{2-x^2}-x+2}+\frac{\left(\frac{1}{x}-1\right)^2}{\sqrt{2-\frac{1}{x^2}}-\frac{1}{x}+2}=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(\frac{1}{\sqrt{2-x^2}-x+2}+\frac{\frac{1}{x^2}}{\sqrt{2-\frac{1}{x^2}}-\frac{1}{x}+2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\Leftrightarrow x=1\left(N\right)\\\frac{1}{\sqrt{2-x^2}-x+2}+\frac{1}{x\sqrt{2x^2-1}-x+2x^2}=0\left(1\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow x\sqrt{2x^2-1}-x+2x^2+\sqrt{2-x^2}-x+2=0\)
Nhân 2 vào ta có:
\(\Leftrightarrow2x\sqrt{2x^2-1}-4x+4x^2+4+2\sqrt{2-x^2}=0\)
\(\Leftrightarrow\left(x+\sqrt{2x^2-1}\right)^2+\left(\sqrt{2-x^2}+1\right)^2+2\left(x-1\right)^2=0\left(VN\right)\)
Vậy phương trình có 1 nghiệm duy nhất là \(x=1\)
1) \(\sqrt{x^2+1}=\sqrt{5}\)
\(\Leftrightarrow x^2+1=5\)
\(\Leftrightarrow x^2=5-1\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x^2=2^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
2) \(\sqrt{2x-1}=\sqrt{3}\) (ĐK: \(x\ge\dfrac{1}{2}\))
\(\Leftrightarrow2x-1=3\)
\(\Leftrightarrow2x=3+1\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=\dfrac{4}{2}\)
\(\Leftrightarrow x=2\left(tm\right)\)
3) \(\sqrt{43-x}=x-1\) (ĐK: \(x\le43\))
\(\Leftrightarrow43-x=\left(x-1\right)^2\)
\(\Leftrightarrow x^2-2x+1=43-x\)
\(\Leftrightarrow x^2-x-42=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)
4) \(x-\sqrt{4x-3}=2\) (ĐK: \(x\ge\dfrac{3}{4}\))
\(\Leftrightarrow\sqrt{4x-3}=x-2\)
\(\Leftrightarrow4x-3=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-4x+4=4x-3\)
\(\Leftrightarrow x^2-8x+7=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
5) \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{1}{2}\) (ĐK: \(x\ge0\))
\(\Leftrightarrow\sqrt{x}+3=2\sqrt{x}+2\)
\(\Leftrightarrow2\sqrt{x}-\sqrt{x}=3-2\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1^2\)
\(\Leftrightarrow x=1\left(tm\right)\)
1)
\(\sqrt{x^2+1}=\sqrt{5}\\ \Leftrightarrow x^2+1=5\\ \Leftrightarrow x^2=5-1=4\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy PT có nghiệm `x=2` hoặc `x=-2`
2)
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\sqrt{2x-1}=\sqrt{3}\\ \Leftrightarrow2x-1=3\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\left(tm\right)\)
Vậy PT có nghiệm `x=2`
3)
\(ĐKXĐ:x\le43\)
PT trở thành:
\(43-x=\left(x-1\right)^2=x^2-2x+1\\ \Leftrightarrow43-x-x^2+2x-1=0\\ \Leftrightarrow-x^2+x+42=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)
Vậy PT có nghiệm `x=-6` hoặc `x=7`
4)
ĐKXĐ: \(x\ge\dfrac{3}{4}\)
PT trở thành:
\(\sqrt{4x-3}=x-2\\ \Leftrightarrow4x-3=\left(x-2\right)^2=x^2-4x+4\\ \Leftrightarrow4x-3-x^2+4x-4=0\\ \Leftrightarrow-x^2+8x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)
Vậy PT có nghiệm \(x=1\) hoặc \(x=7\)
5)
ĐKXĐ: \(x\ge0\)
PT trở thành:
\(\sqrt{x+3}=2\sqrt{x}+2\\ \Leftrightarrow x+3=\left(2\sqrt{x}+2\right)^2=4x+8\sqrt{x}+4\\ \Leftrightarrow x+3-4x-8\sqrt{x}-4=0\\ \Leftrightarrow-3x-8\sqrt{x}-1=0\left(1\right)\)
Đặt \(\sqrt{x}=t\left(t\ge0\right)\)
Khi đó:
(1)\(\Leftrightarrow3t^2+8t+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-4+\sqrt{13}}{3}\left(loại\right)\\t=\dfrac{-4-\sqrt{13}}{3}\left(loại\right)\end{matrix}\right.\)
Vậy PT vô nghiệm.
\(pt\Rightarrow\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2-x\\ \Leftrightarrow x+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=\left(2-x\right)^2\\ \Leftrightarrow x+\dfrac{1}{4}+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{4}=\left(x-2\right)^2\\ \Leftrightarrow\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=\left(x-2\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=x-2\left(1\right)\\\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2-x\left(2\right)\end{matrix}\right.\)
Tới đây giải \(pt\left(1\right)\left(2\right)\), sau đó thế lại vào cái pt ban đầu, từ đó nhận hoặc loại nghiệm tìm được
( Không giải được 2 cái kia thì cmt nhắc nha )
ĐKXĐ: \(x\ge-\dfrac{1}{4}\)
Ta có: \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)
\(\Leftrightarrow x+\sqrt{x+\dfrac{1}{4}+2\cdot\sqrt{x+\dfrac{1}{4}}\cdot\dfrac{1}{2}+\dfrac{1}{4}}=2\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=2\)
\(\Leftrightarrow x+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2\)
\(\Leftrightarrow x+\dfrac{1}{4}+2\cdot\sqrt{x+\dfrac{1}{4}}\cdot\dfrac{1}{2}+\dfrac{1}{4}=2\)
\(\Leftrightarrow\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=-2\\\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}=-\dfrac{5}{2}\left(loại\right)\\\sqrt{x+\dfrac{1}{4}}=\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow x+\dfrac{1}{4}=\dfrac{9}{4}\)
hay x=2(thỏa ĐK)
Vậy: x=2
a, ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{3}{2}.2\sqrt{1+3x}-\dfrac{5}{3}.3\sqrt{1+3x}-\dfrac{1}{4}.4\sqrt{1+3x}=1\\ \Leftrightarrow3\sqrt{1+3x}-5\sqrt{1+3x}-\sqrt{1+3x}=1\\ \Leftrightarrow-3\sqrt{1+3x}=1\\ \Leftrightarrow\sqrt{1+3x}=-\dfrac{1}{3}\left(vô.lí\right)\)
b, \(\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\\ \Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a) ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(pt\Leftrightarrow3\sqrt{3x+1}-5\sqrt{3x+1}-\sqrt{3x+1}=1\)
\(\Leftrightarrow-3\sqrt{3x+1}=1\Leftrightarrow\sqrt{3x+1}=-\dfrac{1}{3}\left(VLý\right)\)
Vậy \(S=\varnothing\)
b) \(pt\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)