K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
28 tháng 8 2021

Kẻ tia \(Ox//aa'\) (\(Ox\)nằm giữa \(OA\)và \(OB\)

\(Ox//aa'\)suy ra \(\widehat{a'AO}=\widehat{AOx}\)(hai góc so le trong) 

\(\widehat{BOx}=\widehat{AOB}-\widehat{AOx}=68^o-40^o=28^o\)

Suy ra \(\widehat{BOx}=\widehat{OBb'}\)

mà hai góc này ở vị trí so le trong nên \(Ox//bb'\).

Suy ra \(aa'//bb'\).

\(OH\perp aa'\)suy ra \(OH\perp bb'\)vì \(aa'//bb'\).

25 tháng 9 2017

Gọi O la giao điểm hai đường chéo hình bình hành

Từ O kẻ OO' vông góc với d tại O'

Ta có O' là trg điểm của A'O (do cùng vuông góc và song song với D' trên duog thẳng d )

suy ra OO'là dg trg bình cua tam giac AAC

suy ra AA' = 2 OO'(1)

Ta có DD' song song BB' ( do cùng vuông óc với d)

suy ra DD' ,BB' là hình thang

Ta có

OO' song song DD' song song BB' (cùng vuông góc d)(a)

Và O là trug điểm DB(b(

Từ (a) và(b) suy ra O là trung điểm D'B'

suy ra OO là dg2 trung bình của bình thang DD' BB'

suy ra OO' là dg trug bình của hình thang DD' BB'

suy ra D'B' =2OO' (2)

Từ (1) và (2) suy ra AA' =BB' +DD'

nhớ cho mình nha

15 tháng 10 2017

bạn ơi đề bài sai rồi đánh lẽ phải là DD'=AA'+BB' chứ

20 tháng 10 2016

tren mang co day ban

29 tháng 10 2016

mk đâu thấy đâu

3 tháng 9 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của hai đường chéo AC và BD.

Kẻ OO' ⊥ xy

Ta có: BB' ⊥ xy (gt)

DD' ⊥ xy (gt)

Suy ra: BB // OO' // DD'

Tứ giác BB'D'D là hình thang .

OB = OD (t/chất hình bình hành)

Nên O'B' = O'D'

Do đó OO' là đường trung bình của hình thang BB'D'D

⇒ OO' = (BB' + DD') / 2 (tính chất đường trung hình hình thang) (1)

AA' ⊥ xy (gt)

OO' ⊥ xy (theo cách vẽ)

Suy ra: AA' // OO'

Trong ∆ ACA' tacó: OA = OC (tính chất hình bình hành)

OO' // AA' nên OO' là đường trung bình của  ∆ ACA'

⇒ OO' = 1/2 AA' (tính chất đường trung bình của tam giác)

⇒ AA' = 2OO' (2)

Tử (1) và (2) suy ra: AA' = BB' + DD'

17 tháng 3 2020

a) Xét ΔOAHΔOAH và ΔOBHΔOBH ta có:

            OA = OB (theo giả thiết)

            HA = HB (H là trung điểm AB)

            OH chung

⇒ΔOAH=ΔOBH(c−c−c)⇒ΔOAH=ΔOBH(c−c−c)

b) Ta có: ΔOAH=ΔOBHΔOAH=ΔOBH (chứng minh trên)

⇒∠AOH=∠BOH⇒∠AOH=∠BOH ( 2 góc tương ứng bằng nhau)

Hay ∠AOC=∠BOC∠AOC=∠BOC

Xét ΔOACΔOAC và ΔOBCΔOBC ta có:

      OA = OB (theo giả thiết)

      OC chung

      ∠AOC=∠BOC∠AOC=∠BOC

⇒ΔOAC=ΔOBC(c−g−c)⇒ΔOAC=ΔOBC(c−g−c)

⇒∠OAC=∠OBC⇒∠OAC=∠OBC(2 góc tương ứng)

Mà ∠OAC∠OAC= 900  nên ∠OBC∠OBC = 900

⇒CB⊥OB⇒CB⊥OB( điều phải chứng minh)

c) Ta có: ∠AOC=∠BOC∠AOC=∠BOC (chứng minh trên)                    (1)

Xét 2 tam giác vuông MIO và MIH ta có:

      MI chung

      IO = IH (Vì I là trung điểm của OH)

⇒ΔMIO=ΔMIH⇒ΔMIO=ΔMIH (Cạnh góc vuông – cạnh góc vuông)

⇒∠MOI=∠MHI⇒∠MOI=∠MHI (2 góc tương ứng)

Hay∠AOC=∠MHIHay∠AOC=∠MHI                        (2)

Từ (1) và (2) ta có: ∠BOC=∠MHI∠BOC=∠MHI (cặp góc ở vị trí so le trong)

⇒MH//OB⇒MH//OB                             (*)

Lại có:

HK⊥BCOB⊥BC}⇒HK//OBHK⊥BCOB⊥BC}⇒HK//OB (Quan hệ giữa tính vuông góc và tính song song của ba đường thẳng) (**)

Từ (*) và (**) ta có: MH và HK cùng thuộc một đường thẳng song song với OB.

Suy ra M, H, K thẳng hàng (điều phải chứng minh)

17 tháng 3 2020

x O y A B H C

a) Xét tam giác AHO và tam giác BHO

có OH chung

HA=HB (GT)

OA=OB (GT)

suy ra tam giác AHO = tam giác BHO (c.c.c) (1)

b) Từ (1) suy ra góc AOC = góc BOC

Xét tam giác AOC và tam giác BOC có 

OC chung

góc AOC = góc BOC

OA=OB (GT)

suy ra tam giác AOC = tam giác BOC  (c.g.c)

suy ra góc OAC = góc OBC (hai góc tương ứng)

mà góc OAC =900

suy ra góc OBC = 900

suy ra CB vuông góc với OB tại B