K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

ta có: góc BAH + góc HAC = 90 độ

góc HCA + góc HAC = 90 độ

=> góc BAH = HCA

xét Tg ABH và Tg CAH

góc BHA = AHC = 90

góc BAH = HCA (cmt)

=> Tg ABH đồng dạng với Tg CAH (g.g)

=> BH/AH = AH/CH
nhân chéo => AH2 = BH.CH

6 tháng 10 2017

mình xin lỗi vì đã quên nói nhưng bài này chưa được dùng tam giác đồng dạng

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

19 tháng 1 2021

\(Pytago:\)

\(AC^2=BC^2-AB^2\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-4^2}=3\left(cm\right)\)

Áp dung HTL trong tam giác vuông ABC có : 

\(AB\cdot AC=AH\cdot BC\\ \Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)

 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-4^2=9\)

hay \(AC=\sqrt{9}=3cm\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB\cdot AC=BC\cdot AH\)

\(\Leftrightarrow AH\cdot5=3\cdot4=12\)

hay AH=2,4cm

Vậy: AH=2,4cm

16 tháng 4 2021

a/ Xét \(\Delta ABC\) và \(\Delta HAC\) có :

\(\left\{{}\begin{matrix}\widehat{C}chung\\\widehat{BAC}=\widehat{AHC}=90^0\end{matrix}\right.\)

\(\Leftrightarrow\Delta ABC\sim HAC\left(g-g\right)\)

b/ \(BC=\sqrt{AB^2+AC^2}=10cm\)

\(AH.BC=AB.AC\Leftrightarrow AH=\dfrac{AB.AC}{BC}=4,8cm\)

c/ \(\Delta HEA\sim\Delta CEH\left(g-g\right)\)

\(\Leftrightarrow\dfrac{HE}{CE}=\dfrac{EA}{HE}\Leftrightarrow HE^2=EA.EC\left(đpcm\right)\)

 

16 tháng 4 2021

a) Xét ΔHAC và ΔABC có:

∠(ACH ) là góc chung

∠(BAC)= ∠(AHC) = 90o

⇒ ΔHAC ∼ ΔABC (g.g)

b) Xét ΔHAD và ΔBAH có:

∠(DAH ) là góc chung

∠(ADH) = ∠(AHB) = 90o

⇒ ΔHAD ∼ ΔBAH (g.g)

c) Tứ giác ADHE có 3 góc vuông ⇒ ADHE là hình chữ nhật.

⇒ ΔADH= ΔAEH ( c.c.c) ⇒ ∠(DHA)= ∠(DEA)

Mặt khác: ΔHAD ∼ ΔBAH ⇒ ∠(DHA)= ∠(BAH)

∠(DEA)= ∠(BAH)

Xét ΔEAD và ΔBAC có:

∠(DEA)= ∠(BAH)

∠(DAE ) là góc chung

ΔEAD ∼ ΔBAC (g.g)

d) ΔEAD ∼ ΔBAC

ΔABC vuông tại A, theo định lí Pytago:

Theo b, ta có:

 

 

 

 

 

 

 

 

 

2 tháng 2 2021

Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^undefined

2 tháng 2 2021

vaidaibangioithe))):

25 tháng 3 2023

a)xét ΔABC và ΔHBA ta có

\(\widehat{BAH}=\widehat{BHA}=90^o\)

\(\widehat{B}chung\)

=>ΔABC ∼ ΔHBA(g.g)(1)

b)xét ΔABC và ΔAHC ta có

\(\widehat{BAC}=\widehat{AHC}=90^o\)

\(\widehat{B}chung\)

->ΔABC ∼ ΔAHC(g.g)(2)

từ (1) và (2)=>ΔHBA và ΔAHC

->\(\dfrac{AH}{BH}=\dfrac{HC}{AH}\)

=>\(AH^2=BH.HC\)

25 tháng 3 2023

loading...  loading...    

 

17 tháng 6 2017

mk k bt

17 tháng 6 2017

1 / xét tam giác ABH đồng dạng  vs CAH trg hợp g-g suy ra AB/AC =BH/AH 

                                                                                <=> 3 /7 =BH /42 

                                                                                           => BH =18 cm 

2 áp dụng hệ thức lượng AH^2 =BH .CH từ bh/ch =9/16 =>CH= 16BH/9 

TA CÓ AH ^2 =16BH^2 /9 SUY RA BH =36 cm SUY RA CH = 64 cm áp dụng pita go suy ra AB ,AC hoặc hệ thức lg cũng đc

8 tháng 5 2023

`a)` Xét `\triangle ABC` vuông tại `A` có: `\hat{B}+\hat{C}=90^o`

      Xét `\triangle ABH` vuông tại `H` có: `\hat{B}+\hat{A_1}=90^o`

    `=>\hat{C}=\hat{A_1}`

Xét `\triangle ABC` và `\triangle HBA` có:

    `{:(\hat{C}=\hat{A_1}),(\hat{B}\text{ là góc chung}):}}=>\triangle ABC` $\backsim$ `\triangle HBA` (g-g)

`b)` Ta có: `BC=HB+HC=4+9=13(cm)`

Xét `\triangle ABC` vuông tại `A` có: `AH` là đường cao

    `@AH=\sqrt{BH.HC}=6 (cm)`

    `@AB=\sqrt{BH.BC}=2\sqrt{13}(cm)`

Ta có: `\hat{DEA}=\hat{ADH}=\hat{AEH}=90^o`

   `=>` Tứ giác `AEHD` là hcn `=>DE=AH=6(cm)`

`c)` Xét `\triangle AHB` vuông tại `H` có: `HD \bot AB=>AH^2=AD.AB`

      Xét `\triangle AHC` vuông tại `H` có: `HE \bot AC=>AH^2=AE.AC`

   `=>AD.AB=AE.AC`

loading...

8 tháng 5 2023

Cảm ơn anh nhiều yeu

2:

a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

b: BC=4+9=13cm

AH=căn 4*9=6cm

S ABC=1/2*6*13=39cm2