K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

\(ab>0\Leftrightarrow\frac{1}{ab}>0\)

\(\frac{1}{a}=\frac{1}{ab}b< \frac{1}{ab}a\)

Theo de ra \(a>b\Leftrightarrow\frac{1}{a}=\frac{1}{b}\)

28 tháng 8 2021

an lam bao goi lam moi nguoi phai ngi dau dau

Giải:

a) \(A=\dfrac{10^{1990}+1}{10^{1991}+1}\) và \(B=\dfrac{10^{1991}+1}{10^{1992}+1}\) 

Ta có:

\(A=\dfrac{10^{1990}+1}{10^{1991}+1}\) 

\(10A=\dfrac{10^{1991}+10}{10^{1991}+1}\) 

\(10A=\dfrac{10^{1991}+1+9}{10^{1991}+1}\) 

\(10A=1+\dfrac{9}{10^{1991}+1}\) 

Tương tự : 

\(B=\dfrac{10^{1991}+1}{10^{1992}+1}\) 

\(10B=\dfrac{10^{1992}+10}{10^{1992}+1}\) 

\(10B=\dfrac{10^{1992}+1+9}{10^{1992}+1}\) 

\(10B=1+\dfrac{9}{10^{1992}+1}\) 

Vì \(\dfrac{9}{10^{1991}+1}>\dfrac{9}{10^{1992}+1}\) nên \(10A>10B\) 

\(\Rightarrow A>B\left(đpcm\right)\) 

Chúc bạn học tốt!

7 tháng 7 2021

Thankss

13 tháng 4 2017

Với mọi a, b ta có : 
( a - b) ² >= 0 
<=> a² - 2ab + b² >= 0 
<=> a² + b² >=2ab 
<=> 2 ( a² + b² ) >= a² +2ab + b² 
<=> 2 (a² + b² ) >= ( a + b )² mà a+b=1 nên 2 ( a² + b² ) >=1 
<=> a² + b² >= 1/2 
Dấu “ = " xảy ra khi và chỉ khi : a=b mà a+b=1 nên a=b=1/2

nha!!!

13 tháng 4 2017

Ta có:

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2=1\)(Vì a+b=1)

\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)(Chia 2 vế cho 2)

Dấu '=' xảy ra khi a=b=1/2

28 tháng 12 2021

vuigiúp mk vs

28 tháng 12 2021

\(a=1+2+2^2+...+2^{2021}\)

\(\Rightarrow2a=2+2^2+2^3+...+2^{2022}\)

\(\Rightarrow2a-a=2+2^2+2^3+...+2^{2022}-1-2-2^2-...-2^{2021}\)

\(\Rightarrow a=2^{2022}-1\)

\(\Rightarrow a=2^{2022}-1=b\)

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

4 tháng 1 2019

vì ab>0 nên a và b cùng âm hoặc dương

+) a,b<0 mà a>b

=> 1/a<1/b

+) a,b>0 mà a>b

=> 1/a<1/b

Vậy....

4 tháng 1 2019

mik chơi đó bn

7 tháng 11 2018

minh choi poke dai chien

con bai minh chui

nho tk minh nhe

tụi bạn ở sv mấy

8 tháng 9 2019

Ta có:  a b < a + c b + c

⇔ a(b + c) < (a + c)b

(vì a > 0, b > 0 và c > 0 ⇔ b + c > 0 và a + c > 0)

⇔ ab + ac < ab + bc

⇔ ac < bc ⇔ a < b (luôn đúng, theo gt)