Trong mặt phẳng tọa độ Oxy cho ba điểm A (1;1) , B (3;3) , C (2;0)
a/ Tính diện tích ∆ABC.
b/ Hãy tìm tất cả các điểm M trên trục hoành Ox sao cho góc AMB nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có P ∈ O x nên P( x; 0) và M P → = x + 2 ; − 2 M N → = 3 ; − 1 .
Do M, N, P thẳng hàng nên 2 vecto M P → ; M N → cùng phương
⇒ x + 2 3 = − 2 − 1 = 2 ⇔ x + 2 = 6 ⇔ x = 4 ⇒ P 4 ; 0 .
Chọn D.
Ta có P ∈ O x nên P(x; 0) và M P → = x + 2 ; − 2 M N → = 3 ; − 1 .
Do M, N, P thẳng hàng nên x + 2 3 = − 2 − 1 ⇔ x = 4 ⇒ P 4 ; 0 .
Chọn D.
a) Ta có:
\(\left\{ \begin{array}{l}\overrightarrow {AB} = (2 - ( - 4);4 - 1) = (6;3)\\\overrightarrow {BC} = (2 - 2; - 2 - 4) = (0; - 6)\\\overrightarrow {AC} = (2 - ( - 4); - 2 - 1) = (6; - 3)\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{6^2} + {3^2}} = 3\sqrt 5 \\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{0^2} + {{( - 6)}^2}} = 6\\AC = \left| {\overrightarrow {CA} } \right| = \sqrt {{6^2} + {{( - 3)}^2}} = 3\sqrt 5 .\end{array} \right.\)
Áp dụng định lí cosin cho tam giác ABC, ta có:
\(\cos \widehat A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{{\left( {3\sqrt 5 } \right)}^2} + {{\left( {3\sqrt 5 } \right)}^2} - {{\left( 6 \right)}^2}}}{{2.3\sqrt 5 .3\sqrt 5 }} = \frac{3}{5}\)\( \Rightarrow \widehat A \approx 53,{13^o}\)
\(\cos \widehat B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{{\left( 6 \right)}^2} + {{\left( {3\sqrt 5 } \right)}^2} - {{\left( {3\sqrt 5 } \right)}^2}}}{{2.6.3\sqrt 5 }} = \frac{{\sqrt 5 }}{5}\)\( \Rightarrow \widehat B \approx 63,{435^o}\)
\( \Rightarrow \widehat C \approx 63,{435^o}\)
Vậy tam giác ABC có: \(a = 6;b = 3\sqrt 5 ;c = 3\sqrt 5 \); \(\widehat A \approx 53,{13^o};\widehat B = \widehat C \approx 63,{435^o}.\)
b)
Gọi H có tọa độ (x; y)
\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AH} = (x - ( - 4);y - 1) = (x + 4;y - 1)\\\overrightarrow {BH} = (x - 2;y - 4)\end{array} \right.\)
Lại có: H là trực tâm tam giác ABC
\( \Rightarrow AH \bot BC\) và \(BH \bot AC\)
\( \Rightarrow \left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = {90^o} \Leftrightarrow \cos \left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = 0\) và \(\left( {\overrightarrow {BH} ,\overrightarrow {AC} } \right) = {90^o} \Leftrightarrow \cos \left( {\overrightarrow {BH} ,\overrightarrow {AC} } \right) = 0\)
Do đó \(\overrightarrow {AH} .\overrightarrow {BC} = \overrightarrow 0 \) và \(\overrightarrow {BH} .\overrightarrow {AC} = \overrightarrow 0 \).
Mà: \(\overrightarrow {BC} = (0; - 6)\)
\( \Rightarrow (x + 4).0 + (y - 1).( - 6) = 0 \Leftrightarrow - 6.(y - 1) = 0 \Leftrightarrow y = 1.\)
Và \(\overrightarrow {AC} = (6; - 3)\)
\(\begin{array}{l} \Rightarrow (x - 2).6 + (y - 4).( - 3) = 0\\ \Leftrightarrow 6x - 12 + ( - 3).( - 3) = 0\\ \Leftrightarrow 6x - 3 = 0\\ \Leftrightarrow x = \frac{1}{2}.\end{array}\)
Vậy H có tọa độ \(\left( {\frac{1}{2}}; 1 \right)\)
Ta có A B → = − 1 ; 11 , A C → = − 7 ; 3 .
Suy ra A B → . A C → = − 1 . − 7 + 11.3 = 40.
Chọn A.
Ta có A B → = − 1 ; 11 , A C → = − 7 ; 3 .
Suy ra A B → . A C → = − 1 . − 7 + 11.3 = 40.
Chọn A.
\(\left\{{}\begin{matrix}x_B=\dfrac{x_A+x_C}{2}\\y_B=\dfrac{y_A+y_C}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1+x_C=4\\3+y_C=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_C=3\\y_C=-5\end{matrix}\right.\)
Chọn A
Điểm N(x;y;0). Tìm x;y từ hệ hai phương trình NA = NB = NC.