(8^2013+8^2011+8^2009):(8^2008+8^2009+8^2010) = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1 nhưng mình ko biết trình bày bạn nào làm biết trình bày thì viết hô mình nha ?
C=(-1+3)+(-5+7)+....+(2011-2013)
= 2+2+2+...+(-2)
= 1004+(-2)
= 1002
D= (2-4)+(6-8)+....+(2010-2012)
= -2+-2+-2+...1002+...+-2
= -502+1002
= 500
G=(1+2-3-4)+(5+6-7-8)+...+(109+110-111-112)+(113+114+115)
= -4+-4+-4+...+-4+342
=-112+342
= 230
A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 2005 + 2006 - 2007 - 2008 + 2009 + 2010 ( có 2010 số )
A = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + .... + ( 2005 + 2006 - 2007 - 2008 ) + ( 2009 + 2010 )
A = ( - 4 ) + ( - 4 ) + ... + ( - 4 ) + 4019 ( có 503 số )
A = ( - 4 ) . 502 + 4019
A = - 2008 + 4019
A = 2011.
CHÚC LÀM BÀI VUI VẺ
a, C=-1+3-5+7-9+...-2009+2011-2013
=(-1+3)+(-5+7)+...+(-2009+2011)-2013
=(2+2+2+...+2)-2013 (503 số 2)
=2.503-2013=1006-2013=-1007
Vậy C=-1007
b, D=2-4+6-8+...+2006-2008+2010-2012
=(2-4)+(6-8)+...+(2006-2008)+(2010-2012) (503 cặp số)
=-2+(-2)+...+(-2)+(-2) (503 số -2)
=-2.503=-1006
Vậy D=-1006
c, G=1+2-3-4+5+6-7-8+...-111-112+113+114+115
=(1+2-3-4)+(5+6-7-8)+...+(109+110-111-112)+(113+114+115)
=-4+(-4)+...+(-4)+342 (28 số -4)
=-4.28+342=-112+342=230
Vậy G=230
=>\(\left(\dfrac{x^2-8}{2008}-1\right)+\left(\dfrac{x^2-7}{2009}-1\right)=\left(\dfrac{x^2-6}{2010}-1\right)+\left(\dfrac{x^2-5}{2011}-1\right)\)
=>x^2-2016=0
=>x^2=2016
=>\(x=\pm\sqrt{2016}\)
\(\frac{x+10}{2008}+\frac{x+9}{2009}=\frac{x+8}{2010}+\frac{x+7}{2011}\)
\(\left(\frac{x+10}{2008}+1\right)+\left(\frac{x+9}{2009}+1\right)=\left(\frac{x+8}{2010}+1\right)+\left(\frac{x+7}{2011}+1\right)\)
\(\frac{x+2018}{2008}+\frac{x+2018}{2009}=\frac{x+2018}{2010}+\frac{x+2018}{2011}\)
\(\frac{x+2018}{2008}+\frac{x+2018}{2009}-\frac{x+2018}{2010}-\frac{x+2018}{2011}=0\)
\(x+2018\cdot\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)
mà \(\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)\ne0\)
\(\Rightarrow x+2018=0\)
\(\Rightarrow x=-2018\)
Vậy,.............
Ta có: \(\frac{x+10}{2008}+\frac{x+9}{2009}=\frac{x+8}{2010}+\frac{x+7}{2011}\)
\(\Rightarrow\frac{x+10}{2008}+1+\frac{x+9}{2009}+1=\frac{x+8}{2010}+1+\frac{x+7}{2011}+1\)
\(\Rightarrow\frac{x+2018}{2008}+\frac{x+2018}{2009}=\frac{x+2018}{2010}+\frac{x+2018}{2011}\)
\(\Rightarrow\frac{x+2018}{2008}+\frac{x+2018}{2009}-\frac{x+2018}{2010}-\frac{x+2018}{2011}=0\)
\(\Rightarrow x+2018\cdot\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)
Do \(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\ne0\)
\(\Rightarrow x+2018=0\)
\(\Rightarrow x=-2018\)
Vậy \(x=-2018\)