K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2019

\(a)\) Có \(2012=x+y\ge2\sqrt{xy}\)\(\Leftrightarrow\)\(xy\le1006^2\)

\(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{x^2+2xy+y^2}+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\)

\(\le2+\frac{4.1006^2}{2012^2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)

\(b)\) \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\ge\left[2+2012\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\ge\left(2+\frac{2012.4}{x+y}\right)^2\)

\(=\left(2+\frac{2012.4}{2012}\right)^2=36\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)

... 

20 tháng 1 2019

cảm ơn bạn nhiều

12 tháng 3 2017

ta có ; A=((x+2012)/x)^2 + ((y+2012)/y)^2

  hay A  =((x+x+y)/x)^2+((y+x+y)/x)^2

            =((2x+y)/x)^2 + ((2x+y)/x)^2

            =(2+y/x)^2 + (2+x/y)^2

đặt x/y=k ta có ;

A=(2+k)^2 + (2+1/k)^2

  =4+4k+k^2+4+4/k+1/k^2 

   \(\ge\)\(2\sqrt{4k.\frac{1}{4k}}\)+\(2\sqrt{k^2.\frac{1}{k^2}}\)\(+8\)(\(BAT\)\(DANG\)\(THUC\)\(COSI\))

   \(=\)\(2\sqrt{1}+2\sqrt{16}+8=2+8+8=18\)

\(_{ }\)vậy max A = 18

28 tháng 3 2019

a. giá trị nhỏ nhất của B=3 khi và chỉ khi x=y=1006

18 tháng 2 2018

\(A=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x+y\right)^2+4xy}{\left(x+y\right)^2}=\frac{2.2012^2+4xy}{2012^2}\)

\(\le\frac{2.2012^2+4.\frac{\left(x+y\right)^2}{4}}{2012^2}=\frac{2.2012^2+2012^2}{2012^2}=\frac{3.2012^2}{2012^2}=3\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1006\)

18 tháng 2 2018

anh hùng giải thích cho em cái chỗ  \(\frac{4.\left(x+y\right)^2}{4}\) với