Cho tam giác ABC, đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I.
a) Tứ giác AHCE là hình gì? Chứng minh
b) Gọi K, M, N là trung điểm AB, HB, HC. Chứng minh KN = IM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AHCE có
I là trung điểm của đường chéo AC
I là trung điểm của đường chéo HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
b: Xét ΔAHB có
K là trung điểm của AB
M là trung điểm của BH
Do đó: KM là đường trung bình của ΔAHB
Suy ra: KM//AH
hay KM\(\perp\)BH
Xét ΔAHC có
I là trung điểm của AC
N là trung điểm của HC
Do đó: IN là đường trung bình của ΔAHC
Suy ra: IN//AH
hay IN\(\perp\)BC
Xét ΔABC có
K là trung điểm của AB
I là trung điểm của AC
Do đó: KI là đường trung bình của ΔBAC
Suy ra: KI//BC
hay KI\(\perp\)AH
mà AH//KM
nên KI\(\perp\)KM
Xét tứ giác KINM có
\(\widehat{IKM}=\widehat{KMN}=\widehat{INM}=90^0\)
Do đó: KINM là hình chữ nhật
Suy ra: KN=IM
a/
Ta có
IA=IC (gt)
IH=IE (gt)
=> AHCE là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
\(AH\perp BC\Rightarrow\widehat{AHC}=90^o\)
=> AHCE là hình chữ nhật (hình bình hành có 1 góc vuông là HCN)
b/
Xét tg AHC có
MH=MC (gt)
IA=IC (gt)
=> G là trong tâm của tg AHC \(\Rightarrow HG=2IG\) (1)
\(\Rightarrow HG+IG=IH=3IG\) (2)
Chứng minh tương tự ta có K là trọng tâm của tg ACE
\(\Rightarrow KE=2IK\left(3\right)\Rightarrow KE+IK=IE=3IK\) (4)
Mà IH=IE (gt) (5)
Từ (2) (4) (5) => IG=IK (6)
Từ (1) (3) (6) => HG=KE
Mà IG=IK => IG+IKGK=2IK=KE
=> HG=GK=KE
a) Xét tam giác AHC vuông tại H:
HI là trung tuyến (I là trung điểm của AC).
\(\Rightarrow\) \(HI=\dfrac{1}{2}AC=\dfrac{1}{2}.8=4\left(cm\right).\)
b) Xét tứ giác AHCE có:
+ I là trung điểm của AC (gt).
+ I là trung điểm của AC (E đối xứng với H qua I).
\(\Rightarrow\) Tứ giác AHCE là hình bình hành (dhnb).
Mà \(\widehat{AHC}\) \(=90^o\) \(\left(AH\perp BC\right).\)
\(\Rightarrow\) Tứ giác AHCE là hình chữ nhật (dhnb).
a/ Xét tứ giác AHCE có
IA=IC (đề bài)
IH=IE (đề bài)
=> AHCE là hbh (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
^AHC=90 (AH vuông góc BC)
=> AHCE là HCN
b/
+ Xét tg AHC có
IA=IC => HI là trung tuyến
MH=MC (đề bài) => AM là trung tuyến
=> G là trọng tâm của tam giác AHC \(\Rightarrow IG=\frac{IH}{3}\Rightarrow IG=\frac{GH}{2}\)
+ Xét tam giác ACE chứng minh tương tự ta cũng có \(IK=\frac{IE}{3}\Rightarrow IK=\frac{KE}{2}\)
Mà IH = IE
=> IK=IG => GH=KE=KI+KG=GK
a: Xét tứ giác AHCE có
I là trung điểm của AC
I là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
b: Xét ΔHKC có
M là trung điểm của HC
MG//KC
Do đó:G là trung điểm của HK
=>HG=GK(1)
Xét ΔEGC có
N là trung điểm của EC
NK//GC
Do đó: K là trung điểm của EG
=>EK=KG(2)
Từ (1) và (2) suy ra EK=KG=HG
a) Xét tứ giác AHCE có:
+ D là trung điểm của AC (gt).
+ D là trung điểm của HE (do E đối xứng với H qua D).
=> Tứ giác AHCE là hình bình hành (dhnb).
Mà ^AHC = 90o (AH vuông góc BC).
=> Tứ giác AHCE là hình chữ nhật (dhnb).
Xét tứ giác AHBN có:
+ M là trung điểm của AB (gt).
+ M là trung điểm của HN (do N đối xứng với H qua M).
=> Tứ giác AHBN là hình bình hành (dhnb).
Mà ^AHB = 90o (AH vuông góc BC).
=> Tứ giác AHBN là hình chữ nhật (dhnb).
b) Tứ giác AHCE là hình chữ nhật (cmt).
=> AE // HC (Tính chất hình chữ nhật).
Xét tứ giác AEHI có:
+ AE // IH (do AE // HC).
+ AI // EH (gt).
=> Tứ giác AEHI là hình bình hành (dhnb).
c) Ta có: AE = IH (Tứ giác AEHI là hình bình hành).
Mà AE = HC (Tứ giác AHCE là hình chữ nhật).
=> IH = HC.
=> H là trung điểm IC.
Xét tứ giác CAIK có:
+ H là trung điểm của IC (cmt).
+ H là trung điểm của AK (AH = HK).
=> Tứ giác CAIK là hình bình hành (dhnb).
Mà AK vuông góc IC (do AH vuông góc BC).
=> Tứ giác CAIK là hình thoi (dhnb).
+ Trong Δ AHC vuông có I là trung điểm của AC
⇒ HE là đường trung tuyến của Δ AHC.
⇒ HI = 1/2AC = AI = IC.
Mà E đối xứng với H qua I ⇒ HI = IE.
Khi đó ta có HI = IE = AI = IC.
+ Xét Δ HCE có CI là đường trung tuyến ứng với cạnh HE
mà CI = 1/2HE ⇒ Δ HCE vuông tại C.
Tương tự xét với Δ AHE,Δ AEC đều là các tam giác vuông tại A, E.
Xét tứ giác AHCE có E A H ^ = A H C ^ = H C E ^ = C E A ^ = 90 0
⇒ AHCE là hình chữ nhật.