tren nua mat phang bo la duong thang lay diem d va P va Qphan biet. tim vi tri diem M de PM+MQ ngan nhat
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
CM,CA là các tiếp tuyến
nen CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC vuông góc với MA tại trung điểm của MA
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD vuông góc với MB tại trung điểm của MB
Từ (1)và (2) suy ra góc COD=1/2*180=90 độ
=>O nằm trên đường tròn đường kính DC
b: Xét tứ giác MIOK có
góc MIO=góc IOK=góc MKO=90 độ
nên MIOK là hình chữ nhật
=>MO=IK
c: Xét hình thang ABDC có
O,O' lần lượt là trung điểm của AB,CD
nên OO' là đường trung bình
=>OO' vuông góc với AB
=>AB là tiếp tuyến của (O')
a: Ta có: M nằm trên đường trung trực của AB
nên MA=MB
Ta có: N nằm trên đường trung trực của AB
nên NA=NB
Xét ΔAMN và ΔBMN có
MA=MB
MN chung
AN=BN
Do đó: ΔAMN=ΔBMN
b: Ta có: ΔAMN=ΔBMN
nên \(\widehat{AMN}=\widehat{BMN}\)
hay MN là tia phân giác của góc AMB
c: Ta có: ΔAMN=ΔBMN
nên \(\widehat{MAN}=\widehat{MBN}\)
Do \(M\in d\Rightarrow M\left(3m;4-4m\right)\)
Gọi \(N\left(x;y\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AN}=\left(x-1;y-1\right)\\\overrightarrow{AM}=\left(3m-1;3-4m\right)\end{matrix}\right.\)
Do A, M, N thẳng hàng nên ta có: \(\frac{x-1}{3m-1}=\frac{y-1}{3-4m}\)
\(\Leftrightarrow\left(x-1\right)\left(3-4m\right)=\left(y-1\right)\left(3m-1\right)\)
\(\Leftrightarrow3\left(x-1\right)-4m\left(x-1\right)=3m\left(y-1\right)-\left(y-1\right)\)
\(\Leftrightarrow m=\frac{3x+y-4}{4x+3y-7}\) (1)
Mặt khác \(\overrightarrow{AM}.\overrightarrow{AN}=4\Leftrightarrow\left(x-1\right)\left(3m-1\right)+\left(y-1\right)\left(3-4m\right)=4\)
\(\Leftrightarrow m=\frac{x-3y+6}{3x-4y+1}\) (2)
Từ (1), (2) ta có: \(\frac{3x+y-4}{4x+3y-7}=\frac{x-3y+6}{3x-4y+1}\)
\(\Leftrightarrow\left(3x+y-4\right)\left(3x-4y+1\right)-\left(x-3y+6\right)\left(4x+3y-7\right)=0\)
\(\Leftrightarrow5x^2+5y^2-26x-54y+38=0\)
\(\Leftrightarrow x^2+y^2-\frac{26}{5}x-\frac{54}{5}y+\frac{38}{5}=0\)
N nằm trên đường tròn tâm \(I\left(\frac{13}{5};\frac{27}{5}\right)\) bán kính \(R=\frac{2\sqrt{177}}{5}\)
Cách tính cơ bản là vậy, nhưng số hơi xấu nên có thể tính nhầm đoạn nào đó