Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giuap mk với giải bt vs ạ
cos2x.tan6x=sin10x
ĐK : cos6x khác 0
cos2x.sin6x/cos6x=sin10x
sin6xcos2x=sin10xcos6x
1/2(sin8x+sin4x)=1/2(sin16x+sin4x)
sin8x+sin4x=sin16x+sin4x
sin8x=sin16x
sin16x=sin8x
\(\orbr{\begin{cases}16x=8x+k2pi\\16x=\frac{pi}{2}-8x+k2pi\end{cases}}\)
\(\orbr{\begin{cases}16x-8x=k2pi\\16x+8x=\frac{pi}{2}+k2pi\end{cases}}\)
\(\orbr{\begin{cases}8x=k2pi\\24x=\frac{pi}{2}+k2pi\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{kpi}{4}\\x=\frac{pi}{48}+\frac{kpi}{12}\end{cases}\left(k\in Z\right)}\)
sin^2(4x)+cos^2(6x)=1
\(\frac{1-cos8x}{2}+\frac{1+cos12x}{2}=1\)
\(\frac{1}{2}-\frac{1}{2}cos8x+\frac{1}{2}+\frac{1}{2}cos12x=1\)
\(\frac{1}{2}cos12x-\frac{1}{2}cos8x=0\)
\(cos12x-cos8x=0\)
\(-2sin10xsin2x=0\)
\(\orbr{\begin{cases}sin10x=0\\sin2x=0\end{cases}}\)
\(\orbr{\begin{cases}10x=kpi\\2x=kpi\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{kpi}{10}\\x=\frac{kpi}{2}\end{cases}}\)
\(x=\frac{kpi}{10}\left(k\in Z\right)\)
cos2x.tan6x=sin10x
ĐK : cos6x khác 0
cos2x.sin6x/cos6x=sin10x
sin6xcos2x=sin10xcos6x
1/2(sin8x+sin4x)=1/2(sin16x+sin4x)
sin8x+sin4x=sin16x+sin4x
sin8x=sin16x
sin16x=sin8x
\(\orbr{\begin{cases}16x=8x+k2pi\\16x=\frac{pi}{2}-8x+k2pi\end{cases}}\)
\(\orbr{\begin{cases}16x-8x=k2pi\\16x+8x=\frac{pi}{2}+k2pi\end{cases}}\)
\(\orbr{\begin{cases}8x=k2pi\\24x=\frac{pi}{2}+k2pi\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{kpi}{4}\\x=\frac{pi}{48}+\frac{kpi}{12}\end{cases}\left(k\in Z\right)}\)
sin^2(4x)+cos^2(6x)=1
\(\frac{1-cos8x}{2}+\frac{1+cos12x}{2}=1\)
\(\frac{1}{2}-\frac{1}{2}cos8x+\frac{1}{2}+\frac{1}{2}cos12x=1\)
\(\frac{1}{2}cos12x-\frac{1}{2}cos8x=0\)
\(cos12x-cos8x=0\)
\(-2sin10xsin2x=0\)
\(\orbr{\begin{cases}sin10x=0\\sin2x=0\end{cases}}\)
\(\orbr{\begin{cases}10x=kpi\\2x=kpi\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{kpi}{10}\\x=\frac{kpi}{2}\end{cases}}\)
\(x=\frac{kpi}{10}\left(k\in Z\right)\)