Cho hình thoi ABCD có góc A = 120 độ . Vẽ tia Ax nằm trong hình thoi sao cho góc xAB = 15 độ . Tia Ax cắt BC tại I và cắt đường thẳng CD tại K . CMR \(\dfrac{4}{3AB^2}=\dfrac{1}{AI^2}+\dfrac{1}{AK^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Trên CD lấy N sao cho góc DAF=15 độ.
Kẻ AE vuông góc với CD tại E.
Tam giác ABM=Tam giác ADF (g.c.g), suy ra AM=AF.
Tam giác AED vuông tại E có \(AD=AE\cdot sinD=\frac{\sqrt{3}}{2}AD\Rightarrow AE^2=\frac{3}{4}AB^2\)
Tam giác ANF có góc ANF=góc BAD-góc BAM-góc DAF=120 độ- 15 độ- 15 độ =90 độ. Suy ra tam giác NAF vuông tại A.
\(\Rightarrow\frac{1}{AN^2}+\frac{1}{AF^2}=\frac{1}{AE^2}\)
hay \(\frac{1}{AN^2}+\frac{1}{AM^2}=\frac{4}{3AB^2}\)
Kẻ AE⊥AN⇒ˆEAN=90o⇒ˆDAE=15o,AB=AD,ˆB=ˆD⇒ΔADE=ΔABM⇒AE=AMAE⊥AN⇒EAN^=90o⇒DAE^=15o,AB=AD,B^=D^⇒ΔADE=ΔABM⇒AE=AM
Theo hệ thức..... ⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2
Lại có AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2
Kẻ AE⊥AN⇒ˆEAN=90o⇒ˆDAE=15o,AB=AD,ˆB=ˆD⇒ΔADE=ΔABM⇒AE=AMAE⊥AN⇒EAN^=90o⇒DAE^=15o,AB=AD,B^=D^⇒ΔADE=ΔABM⇒AE=AM
Theo hệ thức..... ⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2
Lại có AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2
Vậy....
Kẻ tia Ay sao cho \(\widehat{yAD}=15^0\). Tia Ay cắt DC tại E.
Kẻ \(AF\perp DC\left(F\in DC\right)\)
\(\Delta EAD=\Delta IAB\left(g-c-g\right)\)
\(\Rightarrow\left\{{}\begin{matrix}AD=AB\\AE=AI\end{matrix}\right.\) (1)
\(\widehat{EAI}=\widehat{DAB}-\widehat{DAE}-\widehat{IAB}=120^0-15^0-15^0=90^0\)
\(\Rightarrow\dfrac{1}{AE^2}+\dfrac{1}{AK^2}=\dfrac{1}{AF^2}\) (h.t.l. trong \(\Delta AEK\) vuông tại A) (2)
\(\widehat{DAC}+\widehat{DAB}=180^0\) (trong cùng phía, AB // CD)
\(\Rightarrow\widehat{DAC}=60^0\)
\(\Rightarrow\Delta ADC\) đều (AD = DC) có AF là đ.c.
\(\Rightarrow AF=\dfrac{\sqrt{3}}{2}AD\)
\(\Rightarrow\dfrac{1}{AF^2}=\dfrac{4}{3AD^2}\) (3)
(1), (2) và (3) \(\Rightarrow\dfrac{4}{3AB^2}=\dfrac{1}{AI^2}+\dfrac{1}{AK^2}\left(\text{đ}pcm\right)\)
Hình tự vẽ >o<