tìm n thuộc Z sao cho:
a) n^2 + 2 chia hết cho n-1 b)n^2+2n+7 chia hết cho n+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
3n+2 chia hết cho n-1
=> 3n-3+5 chia hết cho n-1
=> 3.(n-1)+5 chia hết cho n-1
Mà 3(n-1) chia hết cho n-1
=> 5 chia hết cho n-1
=> n-1 \(\in\)Ư(5)={-5; -1; 1; 5}
=> n \(\in\){-4; 0; 2; 6}
n2+2n-7 chia hết cho n+2
=> n.(n+2)-7 chia hết cho n+2
=> 7 chia hết cho n+2
=> n+2 E Ư(7)={-7; -1; 1; 7}
=> n E {-9; -3; -1; 5}