tìm GTNN: S=2x^2 +9y^2 -6xy-6x-12y-2017
A=/x-5/.(17+/15-x/)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này đến lớp 8 còn làm đc (bọn chuyên).
Không khó đau, mình hd nhé:
Bạn thấy có 2x^2 và 9y^2 không
2x^2 không là bình phương của gì cả và không ghép được với các số sau nên tách ra.
Giải như bình thường.
\(x^2+x^2+\left(3y\right)^2-6xy-6x-12y+2010\)
\(\left(x-3y\right)^2-4x-12y+x^2-2x+2010\)
\(\left(x-3y\right)^2-4\left(x-3y\right)+4+x^2-2x+1+2005\)
\(\left(x-3y+2\right)^2+\left(x-1\right)^2+2005\ge2005\)
GTNN đạt tại \(x=5;\text{ }y=\frac{7}{3}\).
Theo đó mà phân tích A thành tổng các bình phương sao cho dấu bằng xảy ra tai x = 5; y = 7/3.
\(A=\left(x^2-6xy+9y^2\right)+4\left(x-3y\right)+4+\left(x^2-10x+25\right)+1975\)
\(A=\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-5\right)^2+1975\)
\(A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\)
GTNN LÀ 1975 tại x=5 và y=7/3
\(A=2x^2+9y^2-6xy-6x-12y+2036\)
\(=x^2-10x+25+x^2-6xy+9y^2+4x-12y+4+2007\)
\(=\left(x-5\right)^2+\left(x-3y\right)^2+4\left(x-3y\right)+4+2007\)
\(=\left(x-5\right)^2+\left(x-3y+2\right)^2+2007\)
\(\Rightarrow A\ge2007\)
Dấu "=" xảy ra khi \(x=5,y=\frac{7}{3}\)
\(M=2x^2+9y^2-6xy-6x-12y+2028\\ =3\left(x^2-2xy+y^2\right)-\left(x^2+6x+9\right)+6\left(y^2-2y+1\right)+2025\\ =\left(x-y\right)^2-\left(x-3\right)^2+6\left(y-1\right)^2+2025\ge2025\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=1\end{matrix}\right.\) (vô lí) nên dấu \("="\) ko thể xảy ra
\(N=x^2-4xy+5y^2+10x-22y+28\\ =\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\\=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
ta có:
S= 2x^2+9y^2-6xy-6x-12y-2017
=(x^2+9y^2-6xy)+x^2-6x-12y-2017
=(x+3y)^2+x^2-6x-12y-2017
=(x+3y)^2-(4x+12y)+4+(x^2-2x-1)-2021
=[(x+3y)^2-4(x+3y)+4]+(x-1)^2-2021
=(x+3y-2)^2+(x-1)^2-2021
Vì (x+3y-2)^2 lớn hơn hoặc bằng 0 với mọi x,y; (x-1)^2 lớn hơn hoặc bằng 0 với mọi x,y
nên (x+3y-2)^2+(x-1)^2-2021 lớn hơn hoặc bằng-2021 hay S lớn hơn hoặc bằng -2021
Dấu bằng xảy ra khi và chỉ khi:
x+3y-2=0
và x-1=0 (dùng kí hiệu và)
tương đương(dùng dấu) 1+3y=2
và x=1
tương đương(dùng dấu) y=1/3
và x=1
Vậy GTNN của S là -2021 khi x=1,y=1/3
À mình hỏi dấu /x-5/ nghĩa là gì
nhớ tick cho mình nhá