K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2017

\(A=3^{100}-3^{99}+3^{98}-...+3^2-3+1\)

\(3A=3\left(3^{100}-3^{99}+3^{98}-...+3^2-3+1\right)\)

\(3A=3^{101}-3^{100}+3^{99}-...+3^3-3^2+3\)

\(3A+A=\left(3^{101}-3^{100}+3^{99}-...+3^3-3^2+3\right)+\left(3^{100}-3^{99}+3^{98}-...+3^2-3+1\right)\)

\(4A=3^{101}+1\)

\(A=\dfrac{3^{101}+1}{4}\)

31 tháng 8 2021

Sao ko bảo chị giải đi, kkkk

31 tháng 8 2021

Haizzzzz

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

22 tháng 8 2017

\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)

\(=\frac{\left(101+1\right).100:2}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)

\(=\frac{5050}{1+1+...+1+1}\)(51 chữ số 1)

\(\frac{5050}{51}\)

18 tháng 4 2016

b) B = 2100 - 299 + 298 - 297 + ...+ 22 - 2

=> B x 2 = 2101 - 2100 + 299 -  298  + ...23 - 22

=> B x 2 + B = (2101 - 2100 + 299 -  298  + ...23 - 22 ) + (2100 - 299 + 298 - 297 + ...+ 22 - 2)

  <=>  B x 3 = 2101 - 2 = 2. ( 299 - 1)

=> B = \(\frac{2.\left(2^{99}-1\right)}{3}\)

Phần c) Làm tương tự Lấy C x 3 rồi + với C.

29 tháng 6 2015

Xin lỗi, nhìn nhầm:

A = 3^100 - 3^99 + 3^98 - 3^97 +...........+ 3^2 - 3 + 1 
3A = 3^101 - 3^100 + 3^99 - 3^98 +...+3^3 -3^2 +3 
=> 4A = 3A + A =  3^101 + 1 
A = \(\frac{3^{101}+1}{4}\)

29 tháng 6 2015

B = 3^100 - 3^99 + 3^98 - 3^97 +...........+ 3^2 - 3 + 1 
3B = 3^101 - 3^100 + 3^99 - 3^98 +...+3^3 -3^2 +3 
Cộng vế với vế triệt tiêu, ta có : 
4B = 3^101 + 1 
B = \(\frac{3^{101}+1}{4}\)

1 tháng 5 2017

tính riêng:

\(\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\)

=\(\left(\frac{100}{99}-1\right)+\left(\frac{100}{98}-1\right)+\left(\frac{100}{97}-1\right)+...+\left(\frac{100}{2}-1\right)+99\)

=\(100.\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)+99-98\) 

=\(100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)\)

vậy \(\left(\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=100\)

chúc bạn học tốt ^^

a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(\Rightarrow A+2A=2^{101}-2\)

  \(A\left(1+2\right)=2^{101}-2\)

  \(A.3=2^{101}-2\)

  \(A=\frac{2^{101}-2}{3}\)

b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3\)

\(3B=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2\)

\(\Rightarrow B+3B=3^{101}-3\)

\(B\left(1+3\right)=3^{101}-3\)

\(4B=3^{101}-3\)

   \(B=\frac{3^{101}-3}{4}\)

2 tháng 7 2018

a, \(A=...\)

=>\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

=>\(2A+A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2+2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

=>\(3A=2^{101}-2\)

=>\(A=\frac{2^{101}-2}{3}\)

b, tương tự a \(B=\frac{3^{101}+1}{4}\)