1. Phân tích đa thức thành nhận tử
a) 5ay-3bx + ax -15by
b)\(x^3+x^2-x-1\)
c)\(\left(2a+b\right)^2-\left(2b+a\right)^2\)
d) \(\left(8a^3-27b^3\right)-2a\left(4a^2-9b^2\right)\)
giúp mk vs ~~~please~~~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4a2b3 - 6a3b2 = 2a2b2( 2b - 3a )
b) ( a - b )2 - ( b - a ) = ( a - b )2 + ( a - b ) = ( a - b )( a - b + 1 )
c) ( 8a3 - 27b3 ) - 2a( 4a2 - 9b2 ) = 8a3 - 27b3 - 8a3 + 18ab2 = 18ab2 - 27b3 = 9b2( 2a - 3b )
d) 10x2 + 10xy + 5x + 5y = 10x( x + y ) + 5( x + y ) = ( x + y )( 10x + 5 ) = 5( x + y )( 2x + 1 )
e) 5ay - 3bx + ax - 15by = 5y( a - 3b ) + x( a - 3b ) = ( a - 3b )( 5y + x )
a) \(4a^2.b^3-6a^3.b^2=2a^2.b^2\left(2b-3a\right)\)
b) \(\left(a-b\right)^2-\left(b-a\right)=\left(a-b\right)^2+\left(a-b\right)\)
\(=\left(a-b\right).\left(a-b+1\right)\)
c) \(8a^3-27b^3-2a.\left(4a^2-9b^2\right)=8a^3-27b^3-8a^3+18ab^2\)
\(=-27b^3+18ab^2=18ab^2-27b^3=9b^2.\left(2a-3b\right)\)
d) \(10x^2+10xy+5x+5y=5.\left(2x^2+2xy+x+y\right)\)
\(=5.\left[\left(2x^2+2xy\right)+\left(x+y\right)\right]=5.\left[2x\left(x+y\right)+\left(x+y\right)\right]\)
\(=5\left(x+y\right)\left(2y+1\right)\)
e) \(5ay-3bx+ax-15by=\left(5ay-15by\right)-\left(3bx-ax\right)\)
\(=5y\left(a-3b\right)-x\left(3b-a\right)=5y\left(a-3b\right)+x\left(a-3b\right)\)
\(=\left(a-3b\right)\left(x+5y\right)\)
a, \(\left(8a^3-27b^3\right)-2a\left(4a^2-9b^2\right)\)
\(=\left(2a-3b\right)\left[\left(2a\right)^2+2a.3b+\left(3b\right)^2\right]-2a\left(2a-3b\right)\left(2a+3b\right)\)
\(=\left(2a-3b\right)\left[4a^2+6ab+9b^2-2a\left(2a+3b\right)\right]\)
\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2-4a^2-6ab\right)\)
\(=\left(2a-3b\right).9b^2\)
b, \(\left(x^3-y^3\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left[\left(x^2+xy+y^2\right)+\left(x-y\right)\right]\)
\(=\left(x-y\right)\left(x^2+xy+y^2+x-y\right)\)
c, \(\left(m^3+n^3\right)+\left(m+n\right)^2\)
\(=\left(m+n\right)\left(m^2-mn+n^2\right)+\left(m+n\right)^2\)
\(=\left(m+n\right)\left(m^2-mn+n^2+m+n\right)\)
Chúc bạn học tốt!!!
1. \(4x^2-17xy+13y^2=4x^2-4xy-13xy+13y^2=4x\left(x-y\right)-13y\left(x-y\right)=\left(x-y\right)\left(4x-13y\right)\)
2. \(2x\left(x-5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)
3. \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)
\(\Leftrightarrow\left(2a-3b\right)^2-2\left(2a-3b\right)\left(2b-3a\right)+\left(2b-3a\right)^2=\left(2a-3b-2b+3a\right)^2=\left(5a-5b\right)^2\)
\(=25\left(a-b\right)^2=25\cdot100=2500\)
`a, x^3 + 4x = x(x^2+4)`
`b, 6ab - 9ab^2 = 3ab(2-b)`
`c, 2a(x-1) + 3b(1-x)`
`= (2a-3b)(x-1)`
`d, (x-y)^2 - x(y-x)`
`= (x-y+x)(x-y)`
`= (2x-y)(x-y)`
a)x2-2xy+y2+3x-3y-10
=(x2-2xy+y2)+(3x-3y)-10
=(x-y)2+3(x-y)-10
=(x-y).(x-y+3)-10
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
a) 5ay - 3bx + ax - 15by
= (5ay + ax) - (3bx + 15by)
= a (5y + x) - 3b (x + 5y)
= (5y + x) (a - 3b)
b) x^3 + x^2 - x - 1
= (x^3 + x^2) - (x + 1)
= x^2 (x + 1) - (x + 1)
= (x + 1) (x^2 - 1)
c) (2a + b)^2 - (2b + a)^2
= 4a^2 + 4ab + b^2 - 4b^2 - 4ab - a^2
= 3a^2 - 3b^2
= 3 (a^2 - b^2)
d) (8a^3 - 27b^3) - 2a (4a^2 - 9b^2)
= 8a^3 - 27b^3 - 8a^3 + 18ab^2
= 27b^3 + 18ab^2
= 9b^2 (3b + 2a)